
The GTL Programming Language

Programmer’s Reference Manual
by

Doug Lennox

Copyright © 2000 – 2023

Lennox Computer

Edition 28 December 2023

 2

The GTL Programming Language
Preface

GTL Stands for General Tuple Language. The language design and implementation is the work of Doug Lennox of
Lennox Computer, and the design and implementation is the copyright property of Lennox Computer.

Some aspects of the design of the language are based on the work of Arthur Evans Jr. of MIT1 and Martin Richards of
the Computing Laboratory Cambridge2, who in turn acknowledge the work or Peter J Landin of Imperial Collage
London3.

The purpose of the GTL language is to provide a very high level-programming environment for the future development
of programming applications to be distributed and supported as part of Lennox Computer suite of business accounting
and data-processing applications.

The major design criteria for GTL are as follows:

Logical
Completeness

The applicative subset of GTL is a complete Lambda Calculus evaluation engine with fully
implemented function objects bound to environments. The scope and extent of variables is
comprehensively consistent with the rules of the Lambda Calculus.

The L-value, R-value model is completely and consistently implemented with a thoroughly sound
treatment of the assignment statement.

Notational
Clarity

The declarative structure of the syntax and the handling of bound and free variables are modelled on
traditional mathematical notation. e.g.
let x, y = e1, e2 in f(x, y)
or
g(a, b, c) where a, b, c = e1, e2, e3

Simplicity of
types

L-values are type-less. Basic R-values may be integers (32-bit signed), floating point (64-bit
signed), strings, and tuples.

Fully Automatic
Memory
Management

The interpreter with built in automatic garbage collection administers memory allocation. The tuple
is the primary construct available for building data-structures. Tuples are implemented with efficient
operation as a primary goal.

32-bit Windows
Environments

While GTL is an abstract, very high level-programming environment, platform independence is not
an immediate goal of this project. The GTL compiler and interpreter are written in the C
programming language with YACC-like support from a parser generator called PARGEN. The aim
is to provide a sophisticated, high performance graphical user interface language specifically
targeted at the Microsoft WIN32 environment, exploiting multi-threaded execution and the WIN32
virtual memory system. GTL is a production-programming tool.

Robustness GTL is the antithesis of C. A meaningful error or exception at execution time will be accurately
reported. Complete type checking will be implemented in all semantics and all library operators. It
will be impossible for the interpreter to cause a memory addressing exception, or an illegal hardware
operation.

Polymorphism
prohibited

All library operators will accept only uni-morphic argument typing. (4)

Implicit type
Conversions
Limited

PAL above prohibited implicit type conversion completely. GTL will relax this ban only with
respect to promotion of integers to floating-point. e.g. let i, x = 3, 3.414 in x + i will
yield 6.414 without error. (5)

References
1. PAL Pedagogic Algorithmic Language, Dept Electrical Engineering, MIT, 1970.
2. The BCPL Programming Language – various papers and manuals, circa 1968 – 72
3. “The Next 700 Programming Languages”, Landin 1966.
4. (Actually, this virtue is violated a fair bit to achieve practical API interfaces)
5. The introduction more recently of 64-bit values (R-values) means that is has been

convenient to implement a variety of implicit type conversion between 32-bit, 64-bit and
floating-point values – generally with promotion of a result to higher precision.

 3

General Operation

GTL programs are created as ASCII text files with file type (extension) .gtl
e.g. TestCase.gtl

They may contain include statements which reference other .gtl files containing library functions or definitions.

A GTL program is compiled and interpretively executed by gtl.exe by passing the name of the file to be executed as the
first parameter to gtl.exe – for example in a command prompt window one might type:

gtl TestCase.gtl

Of course, it is possible to associate the gtl extension with gtl.exe such that double clicking on a file with type .gtl will
invoke the gtl.exe compiler/interpreter.

If the gtl program generates any output, a new window will be created and become visible to the operator containing the
output. If it does not then the GTL program will execute invisibly as a windows “process” and can only be stopped by
using windows Task Manager, if it does not exit naturally.

When the gtl execution window is open, there are two “threads” of execution present within a single window process –
one executes the gtl program and the other implements the usual Windows message loop processing. When the gtl
thread finishes, the windows message loop thread stays around to continue to handle mouse, and keyboard traffic to
allow the operator to scroll and inspect the output generated by the completed execution. The operator may
subsequently close the window when no longer interested in the program’s output. If the operator attempts to close the
window before the gtl execution thread is complete, then a warning dialog box is presented. If the operator chooses then
to proceed with the close operation, then both threads are stopped and the window closed. This is a way of stopping a
GTL execution which is out of control or no longer required.

In some situations, GTL programs may direct all of their output via a TCP/IP virtual circuit operating in either client or
server role, and may therefore not create a visible window on the machine on which they are running.

Output by GTL Programs

GTL adheres to the original LISP concept that output is a natural consequence of expression evaluation. So where a
GTL program consists of a single expression the output of the program is the value of that expression, and that output is
shown in the default context which is initially the Microsoft Window associated with the GTL execution. The
destination of the output may be changed (re-directed) by use of the select operator typically to a file or TCP socket. In
That case there may be no visible Window, as GTL does not make the window visible until some output is directed to
it.
Where a GTL program consists of a series of expressions separated by ‘;’ characters then the values of these expression
are output in sequence. For example:

let NL = “
“ in
font(“Arial”, 10);
“This is the start of a GTL program execution”; NL;
“This is the 2nd line of output”; NL;
“This is the 3rd and last line”; NL

will generate three lines of output in the window, e.g.

This is the start of a GTL program execution
This is the 2nd line of output
This is the 3rd and last line

 4

The GTL Lexical Scanner or Pre-processor
The Lexical Scanner is that part of the GTL Compiler/Interpreter which reads ASCII text file input, character by
character and renders it into tokens or lexical items for further processing by the GTL Parser.
Some elements of the scanned input text are handled completely by the Lexical Scanner without being passed on to the
Parser and these will be discussed here.

Form of Input Action

Sequences of decimal digits not including a
period terminated by a white space or
punctuation character.

Passed on to Parser as a ref literal (signed 32-bit integer).

Sequences of decimal digits including a period
terminated by a white space or punctuation
character.

Passed on to the Parser as a num literal (signed 64-bit floating-
point)

Sequences of alphanumeric characters starting
with an alphabetic terminated by a white space or
punctuation character. The underscore character
is considered to be alphabetic.

Passed on to the Parser as a reference to an identifier, or a reserved
word with the following exceptions.

Sequences of printable ASCII characters possibly
including space and new-line, enclosed in a
matching pair of double quotation marks.

e.g.: “The quick brown fox”

Passed to the Parser as a literal string, which evaluates to a new
string RV whenever the interpreter executes it.

(Note: MS Word shows matching quotes thus “ ”, but in GTL the
opening and closing quotation marks are the same character.)

Include statements e.g.
include “library.gtl”

The Lexical Scanner opens the include file and continues
processing input from there. Tokens for the include statement itself
and its argument are not passed to the Parser.

This means that include statements may be placed anywhere in a
GTL source file and the compiler will parse the files as if they are
joined together, and resume processing the outer file at the end of
the included file.

Include files may be nested to a maximum of 10 levels.

Define statements e.g.
define ITCustomer 1

The lexical scanner reads the two arguments to the define
statement, expecting an identifier and a literal respectively.

The identifier is entered into the compiler’s dictionary as a
manifest constant with the value set to the second argument.

A manifest constant is simply a name for a number. No memory is
allocated. No L-value is created. Referring to it in a program is
essentially the same as referring to a literal.

Care should be exercised in the use of manifest constant defines,
because the names defined do not obey the rules of scope and
extent for variable names. Once a manifest constant is defined,
because the pre-processor substitutes it, you cannot make a hole in
the scope of the name by declaring it as a variable in nested
definitions.

Conventions such as all capitals, or a leading underscore character
should be employed to keep the name spaces for manifests and
variables separate.

Special defines: define NOMENU 1 inhibits the creation of the standard File
menu and suppresses the Windows menu bar.

 5

 L-values & R-values in GTL
The model for L-values and R-values is based on the concept of a memory location which has an “address” (the L-
value), and a “contents” the R-value.

The “L” and the “R” refer to left hand side and the right hand side of an assignment statement, where normal usage is
that the left hand expression indicates the place to put something and the right hand expression indicates the new
contents to put into that location.

The model used in GTL is more sophisticated and more abstract than the old BCPL and C usage, which was basically
hardware oriented. The basic structure provides for two mappings between three sets.

Identifiers L-Values R-Values
In a GTL declaration such as let p = 3.414 in . . . both mappings are initially established. The identifier p is
mapped to a newly created L-value whose “contents” are initialised to the R-value 3.414. The mapping from the
identifier to the L-value remains unbroken for the extent of the block at the head of which it is declared. However, the
same identifier may be re-declared in an inner block making a “hole in the scope” of the outer declaration.

The mapping from the L-value to the R-value may be changed at any time by the execution of an assignment statement.

A tuple is a special kind of R-value, which contains an ordered set of L-values. The members of a tuple are “accessed”
by applying the tuple R-value to an integer R-value to yield either an L-value or an R-value depending upon the context.
Generally if a tuple is applied in the initialising expression of a declaration eg. let x = t 4 in . . . then the
new identifier “shares” with the member of the tuple. That is to say, it maps to the same L-value so that if one is
assigned to, the other also changes.

In the following example, the objects headed TUPLERV and TUPLE are a representation of the internal data structures
used by the GTL compiler/interpreter in the implementation of tuples. They are not directly accessible by the GTL
programmer.

Some examples of how the objects in this diagram might be subsequently used follow:

Example Result

let x = t 2 in The variable x maps to the L-value that maps to the R-value “Arthur”. No new
L-value or R-values are created.

let x = $(t 2) in A new L-value is created - forced by the $ unshare operator and it is initialised
to “Arthur”.

t 1 := “Henry” The contents of the 2nd L-value of the tuple are replaced by a new R-value.

t := t aug “Harry” The identifier t maps to the same L-value, and it in turn maps to “the same” R-
value, but that R-value has grown to a tuple of order 4 – (“Mary, “George”,
“Arthur”, “Harry”). Any variables, which share with t, or any of the members
of t will continue to do so (aug is theoretically inelegant but pragmatically
efficient).

let u = t au “Frederick” The au operator is a theoretically “pure” version of the aug operator and should
be employed when perfect Lambda Calculus behaviour is desirable, typically in
recursive applicable functions.

u maps to a new L-value which does not share with t, but the first three L-
values of u share with L-values of the members of t, and the 4th element of u
comprises a new L-value and a new R-Value.

Let t = (“Mary”, “George”, “Arthur”) in

Identifier t TUPLE

3
STRINGRV

LV

LV

Mary

George

Arthur

LV

0

TUPLERV

ORDER

MEMBERS
LAST

LV

 6

GTL R-Value Types

 Type Attributes Constructor Description
1 num This is a signed 64 bit floating-point number (double in C parlance)
2 ref This is a signed 32 bit integer
 Int64 This is a signed 64-bit integer

3 string This is a string.
4 tuple A tuple is an ordered set of L-values, each of which may contain any type of

GTL R-value. A tuple value may be applied to a ref value i to yield the ith L-
value (in L context) and the corresponding R-value (in R context). The
operator order may be applied to a tuple value to yield a ref value indicating
the number of elements. Tuples may be of any size the operator aug is
available to add another element at the end of a tuple.
Tuples may be created in GTL programs by means of the comma operator
e.g. let t = (x, y, z) in . . .

5 lambda A lambda expression with its free variables bound to an environment, ready
for application in some other context.

6 lv An internal only type used in the construction of tuples.
7 dummy A useless type, returned by the assignment operator or another imperative

style operator.
8 primitive A built in function. Rarely used – most built in library operations are

implemented as operators through the parser to avoid name lookup
overheads at execution time.

9 file input, output A character stream I/O type. Used by the select operator, and the various
input functions, lin, tin, stin, etc.

10 coord x
y

coord Used to update the caret position in regards to the current caret position.

11 absco x
y

absco Used to set the caret position.

12 rect w
h

rect Used to draw a rectangle on the screen. The attribute w is the width of the
rectangle and h is the height

13 bitmap name
x
y

bitmap Used to draw a bitmap on the screen. The attribute x is the width of bitmap
to be drawn, and y is depth of the bitmap to be drawn. Name is the file name
and directory of the picture to be displayed

14 pen colour
with
style

pen Used to set the colour of the pen. The pen is used for drawing the outline of
rectangles on the screen. The colour attribute sets the colour of the pen, and
the pen attribute is a handle to a Microsoft pen.

15 brush colour
style
brush

brush Used to set the colour of the brush. The brush is used for filling in the
rectangle on the screen. The colour attribute sets the colour of the brush,
the style attribute sets the style (either transparent of full), and the brush is a
handle to the Microsoft brush.

16 font name
size

font Used to set the font style and size. The attribute name is the font name. If
the font name doesn’t match exactly with one in system, the font is closely
matched with one that does exist in the system. The colour is determined by
the textcolour_rv

17 textcolour r
g
b

textcolour Used to set the text colour. r is the amount of red, g is the amount of g and b
is the amount of b used in the final text colour.

18 res A type used in the implementation of the valof/res semantics. The res type
itself is not normally seen.

19 date A 32-bit representation of a date, rendered as DD/MM/YY when output.
20 time A 32-bit representation of a time, rendered as HH:MM when output. Held as

seconds since midnight.
21 field Used to allow an operator to input text.
22 menu menu

val
menu Used to manipulate the menu in the oWindow. It contains a Microsoft handle

to a menu item, and a return value
23 line Used to draw a line on the screen using the current pen and brush and the

current caret position.
24 filemap A memory mapped file, accessible in virtual memory. Returned by the file

operator, and available for transmission on a TCP/IP virtual circuit by the
send operator.

25 byte byte A sequence of 8-bit bytes allocated in garbage collectable memory. The
length operator may be applied to the byte value, and it may be applied to a
ref in the range 0 to n-1 to access an individual byte member. The byte
constructor does not initialise the values of the individual bytes.

26 gif b2gif A similar data structure to a byte type, but subject to interpretation as a GIF
graphic image upon output to a device context.

27 tga b2tga A similar data structure to a byte type, but subject to interpretation as a TGA
graphic image upon output to a device context.

28 tiff b2tif A similar data structure to a byte type, but subject to interpretation as a TIFF
graphic image upon output to a device context.

29 pict b2pic A similar data structure to a byte type, but subject to interpretation as a
PICT graphic image upon output to a device context.

30 jpeg b2jpg A similar data structure to a byte type, but subject to interpretation as a JPG
graphic image upon output to a device context.

31 png b2png A similar data structure to a byte type, but subject to interpretation as a

 7

PNG graphic image upon output to a device context.
32 wemf b2wmf A similar data structure to a byte type, but subject to interpretation as a

WMF graphic image upon output to a device context.
33 pcx b2pcx A similar data structure to a byte type, but subject to interpretation as a PCX

graphic image upon output to a device context.
34 pgm b2pgm A similar data structure to a byte type, but subject to interpretation as a

PGM graphic image upon output to a device context.
35 bmp b2bmp A similar data structure to a byte type, but subject to interpretation as a

BMP graphic image upon output to a device context.
36 abscale abscale Used to set the absolute scale of an image
37 scale scale Used as a multiplication factor to modify the scale of an image
38 eps b2eps A similar data structure to a byte type, but subject to interpretation as a EPS

graphic image upon output to a device context.
39 child A child oWindow
40 pbar progressbar A progress bar
41 btree bopen A B* Tree
42 semaphore semaphore A semaphore
43 pipe
44 zip zipopen A Zip file
45 directx d3_window A Direct X child window
46 polygon ((x0, y0), … polygon A 2 dimensional polygon value
47 ellipse w, h ellipse A 2 dimensional ellipse value
48 array n array A fixed size array of LVs which may be applied to a ref (0 to n-1)

Objects in GTL

GTL does not embrace the broad concepts of C language derived Object Oriented Programming languages as the philosophical
direction o f GTL is towards advanced applicative concepts and the tuple, as the major data-structure paradigm.

However a form of object data-structure is implemented as an aid to data portability and crass polymorphism.

An object in GTL is represented by a tuple of pairs where the even elements are the property names which may be either integers (ref
values in GTL parlance) or strings, and the odd elements are the values associated with pre-ceding property.

For example:

(pX, 1000, pY, 1000, pW, 2400, pH, 200, "Notes", "This is a graphic object example")

Where pX, Py etc are probably defined as ref literals.

Such objects are created and their properties area accessed using the @ operator in GTL. A property can be added or updated by using
the @ operator on the left-hand side of an assignment statement. For example:

let g = () in

g @ pW := 4800;
g @ pX := 2000;
g @ pY := 3000;

etc

The use of the @ operator outside of a left-hand context yields the value of the property e.g. g @ pX evaluates to 2000.

If the property is not present in the object the value returned is $undef$.

The $undef$ value will be operates as a "unity" value for relevant operators - for example a string concatenated with $undef$ remains
unchanged.

 8

The Concept of Application in GTL

GTL contains a comprehensively implemented applicative evaluation interpreter based on lambda calculus principles.

The syntax used to indicate application is the juxtaposition of two expressions.

e.g

f x

Note that the traditional functional application notation from mathematics f(x) works, but according to the syntactic
rules of GTL the brackets are redundant unless they are required to indicate precedence – for example:

f (x - 1)

versus

f x – 1

The semantic effect of application varies depending upon the types of the applicator and the applicand.

Applicator Applicand Operation
Lambda expression Any type The lambda expression is evaluated after binding its formal parameters to the

value(s) of the applicand. If the applicand evaluates to a tuple, then the order of
the formal parameters must equal the order of the tuple.
However if there is a single formal parameter it will bind to any argument
including a tuple. This is a powerful means of implementing variable or
polymorphic parameterised functions.

Tuple Ref The application yields the ith element of the tuple (0 <= i < n) where n is the
order of the tuple.

String Ref The application yields the ith character of the string.
String String The applicator is taken to be a regular expression and is applied to the applicand

to yield a tuple of strings as a result of pattern matching the regular expression to
the applicand string.

Regular expression syntax:
* matches any sequence of zero or more characters.
? matches any one character.
For example:

<<>> "Dear <<Name>> our Mr <<SalesMan>> will be calling"

will yield the tuple

 ("Dear ", "Name", " our Mr ", "SalesMan", " will be calling")

 9

The GTL Operator Library
Operator Argument Return Value Description

String Operators
stem string string Returns the first letter of the argument string as a string.

stern string

tuple

string

tuple

Returns a string identical to the string argument excluding the initial
character. Application to the null string will cause an execution time
error.

When applied to a tuple returns a new tuple whose members share with
2nd through the nth members of the argument tuple. Application to a
null tuple returns a null tuple.

last string

tuple

string

tuple

Returns the last character of the string as a 1 character string. Returns
the null string if the argument is the null string.

Returns the last element of a tuple as a tuple of order 1, the tuple
element shares with the last element of the argument tuple. An
execution time error is generated if () is passed to last

front string

tuple

string

tuple

Returns a string comprising all but the last character of the argument
string. Returns the null string if the argument is the null string.

Returns a tuple comprising all but the last element of the argument
tuple. The resulting tuple shares with the corresponding elements of the
argument tuple. If () is passed to front an execution time error is
generated.

length string ref Returns the length of a string, byte or shared memory value. (may
also be applied to a file value return by the input operator, and a
filemap value returned by the file operator in these cases the size of the
file in bytes is returned).

space ref string Creates and returns a string of space characters the specified length.

textsize string (w, h) The result is the size in twids of a rectangle which would enclose the
argument string with reference to the device context of the video
display. Useful for positioning the caret accurately with respect to
output. The string may contain NL sequences, in which case the h
element of the result is for a multi-line text rectangle.

textlength string w Returns the length in twids of the string as it would display in the video
device context. Only suitable for one line strings.

words string tuple Breaks the string up at punctuation and white spaces. Punctuation is
included in the result. Any control character except (CR, LF, TAB &
SPACE) is considered punctuation and returned as a string of length 1.

whitesplit string tuple Breaks the string up at white space. Returns a tuple of the strings that
were separated by one or more white spaces. Sub-strings enclosed in
quotation marks e.g. “The quick brown fox” are not split, but the
quotation marks are removed.

whitesplitter string tuple Similar to whitesplit above, except that quotation marks are not treated
specially.

linesplit string tuple Breaks the string at CRLF sequences, or LF sequences for unixy style
strings, returns a tuple of strings with the CRLF or LF sequences
eliminated, successive CRLF or LF sequences are indicated in the
resulting tuple by null string members.

In addition linesplit caters for the use of (char 3), control-C, used as a
paragraph mark, and treats it similarly to an LF character.

linesplit applied to a null string returns ().

split (string,
string)

(string, string) e.g.
split(“Suburb=Hamilton”, “=”) returns
(“Suburb”, “Hamilton”)
split searches from left to right along its first argument, for a string
equal to its second argument, and returns a tuple of two strings, being
the substring to the left of the matching character, and the substring to

 10

the right of the matching character. If no match is found, split will
return two null strings.

csvsplit string tuple Given a one line CSV string, returns a tuple with the elements split on
the commas – double quotes are optional delimiters - all elements are
returned as strings.

subst (string,
string,
string)

String e.g. subst(“/”, “-“, “TEST/1”) returns “TEST-1”
if args are (c, s, t) Every occurrence of string c in in string t is replaced
by string s. Multi-character strings of any size may be passed as any of
the arguments.

removeoccurence (string1,
string2)

string Removes all occurrences of string2 from string1

upper string string Converts the characters to their uppercase representations.

lower string string Convert the characters of the string argument to all lower case as
necessary.

. 2 * string

2 *tuples

string

tuple

The period operator is an infix operator, which takes two strings and
concatenates them together. i.e.

“ab”.“cd” = “abcd”
Either argument may also be a ref value in which case it is converted to
a decimal string.

Returns a new concatenated tuple whose members share with the
members of the arguments.

cat tuple string Efficient bulk string concatenation – given a tuple of strings returns a
single string concatenated from all the argument strings.

catb tuple byte Efficient bulk concatenation of byte data.

cats tuple string Same as cat but with a single space between each string.

catl tuple string Same as cat but with a NL (CRLF) between each string.

catc (t, s) string Same as other cat operators but allows the separator string to be
specified.

char ref string Returns a string of length 1 of the character whose ASCII code is given
as the operand. e.g.

char 27
creates a string of length one, containing the escape character.

ascii string ref returns the ascii code of the 1st character of the string argument. Returns
0 for a zero-length string.

! S ! (a, b) string

byte

The ! operator is an infix operator, which takes a string to its left and a
2-tuple to its right. It returns a substring of the 1st operand defined by an
offset and size given as the 2nd operand. eg.

“Fred” ! (2, 2)
evaluates to “ed”.
If the substring overlaps the end of the operand string the result is
padded with space characters. This is a convenient way of converting a
variable length string to a fixed size. e.g. s!(0, 12)

If a is >= the length of S the result is a string of b spaces.

If the left hand argument to the ! operator is a byte or filemap value,
then the value returned is of type byte, this is a convenient way of
manipulating binary data, and extracting fixed size records therefrom.
If the requested subfield overlaps the end of the argument, then the
result is padded with null bytes.

blank string ref (1/0) Determines if a string consists of white space only.

isnumeric string ref(1/0) Returns 1 iff all the characters of the string are numeric digits. (0-9)

isalphanumeric string ref(1/0) Returns 1 if at least one character of the string is in the range “0” to “9”

unspace string string Removes all spaces from the string and appends them at the end so the
result string is the same length.

 11

string string Hash operator removes trailing spaces and control characters (including
carriage return and line feed), from a string value. Converts <undef> to
null string.

hts string string Make a string HTML friendly – removes leading white space, trailing
white space and converts multiple white space to a single space
character.

keyform string string Create s string to a plain form suitable for use as a key. All upper case,
no punctuation.

alphaupper string string Returns a string containing only upper-case alpha and numeric digits.
No spaces.

xmltag string string Converts human readable string into strict XML tag

ampup string string Translates, <. >, &, ‘ , “ into & form.

unamp string string Convert ampersand escapes of the form & to single character
equivalents.

lookup string lv/rv Returns an lv or rv depending upon context, where the string argument
is interpreted as a variable name. If the string is undefined lookup will
return nil.

manifest string ref define identifiers are usually referenced directly in Gtl source, but
sometimes it is desirable to be able to retrieve the value of a define with
reference to a string value, and that is the purpose of the manifest
operator.

Tuple Operators
null tuple ref (1/0) Returns 1 when applied to nil, otherwise returns 0.

order tuple ref Returns the order of the tuple.

charcount (s, c) ref Counts the number of times a character appears in a string. Format of
argument is (string, character to count)

atom string ref atom returns a ref value that uniquely identifies the string. Repeated
calls to atom for the identical string will yield the same integer. The
first time (in a GTL execution) that atom is called 1 is returned, and for
each subsequent call for a different string, the return value is
incremented. This is intended to make the values returned by atom
useful as tuple indices.

atomreset nil dummy Resets the atom value to 1 for the current GTL program, and destroys
all pre-existing atoms.

atomname ref string atomname is the inverse of atom. It returns a string corresponding to
the integer value originally returned by atom. If the ref value passed
was not previously returned by atom, a GTL execution time error
ensues.

urlcanonicalize (string, e) string Invokes API function to canonicalize URL strings. If e is 1 the string is
encoded, if e = 0 the string is decoded (i.e., %20 changed to space, etc).

md5 string string Returns a 32-character hex-decimal hash of the input string as defined
by RSA in RFC 1320 – Security encryption applications.

rtf string tuple Where the argument is a string of Rich Text formatted data, the result
is a nested tuple decoded from the RTF data suitable for further
interpretation.

segment file tuple Decodes an UN/EDIFACT segment into a tuple form from an input
file.

nextpart (Offset,
Content,
Boundary)

ref Offset is a ref should be 0 in 1st call, Content is a string of multipart
MIME data, may contain binary bytes, and Boundary is string MIME
boundary – return an Offset to the next MIME multi-part or 0 if there
are no more.

embedhtml (s, u) dummy If u = 0 s is a string of HTML, if u = 1 s is a URL string. The web
browser is embedded in the currently selected window and the HTML
is rendered as appropriate. Use embed(“”, 0) to un-embed.

spellcheck string string Displays a spell checker dialog enabling the operator to make
corrections and returns the corrected string.

 12

or

lambda

When applied to a lambda object returns the number of bound
variables.

member (s, t) ref Where s is the string to look for in tuple t. If s is found in t, then
member returns i+1 where i is the offset in the tuple of the string, else
it returns 0.

s may also be a ref, num or tuple – in the tuple case, a match is made
on the identical r-value. The tuples are not compared structurally as in
the case of comparison operators.

union (A, B) tuple Returns the set union of two tuples A, B regraded as sets – i.e. if A and
B have unique elements – so will the result. (Tip – union(A, A) is
clever way of eliminating duplicate values from a tuple - i.e. making it
a “proper” set). Members of the result share with members of the
arguments.

join (A, B) tuple Returns the set join (intersection) of A with B i.e. only these elements
which are members of both arguments.). Members of the result share
with members of the arguments.

reverse tuple tuple Returns a new tuple whose elements are in reverse order. They share
with the elements of the argument tuple.

memberprefix (s, t) ref (1/0) Similar to member, except instead of requiring and exact match for the
string, it returns the 1st offset which contains a string for which the 1st
argument is a matching prefix. E.g. Electronic will match with
Electronics

col (t, i) tuple Returns a tuple formed from the ith column of a table (tuple of tuples).
The resulting tuple elements share with the elements of the table tuple.
The operator will fail if any element of the table is too short (order <=
i)

sum t num Accumulates the arithmetic sum of the tuple’s elements and returns it
as a single num value. Elements may be either ref or num types. Any
other types will cause an execution time error.

has t has x i+1 has is an infix predicate which is true if the 2nd operand is a "member"
of the tuple 1st operand, in the sense that it is an identical (sharing) l-
value. e.g.

let x = "Hello" in
let t = (x, "there") in t has x
will be true.

The actual value returned is the offset in the tuple plus 1.

remove (t, n) rv Removes the nth element from tuple t. n is a ref that is less than the
value returned by the order operator. The return value is the rv that
was removed from the tuple. EG

let NL = "
" in
let t = (“a”, “b”, 2, 3, 4, 5, 6, “c”) in
remove (t, 7); NL;
t; NL

The output would look like:-

“c”
(“a”, “b”, 2, 3, 4, 5, 6)

Note: this is a fairly ugly operator. There is probably a better way of
structuring your program without using it.

One efficient role for the remove operator is in the implementation of a
FIFO de-queue operation e.g.

if order Q do Next := remove(Q, 0)

 13

Where elements have been added to the Q tuple with the aug operator.

copy tuple tuple The copy operator makes an unshared copy of the argument tuple at the
top level. Any nested tuples will still be shared.

t2a tuple array Creates an array of L-Values sharing with the members of the tuple.

sort tuple tuple Sorts the elements in a tuple in ascending order. If a member of the
input tuple is a tuple, then it will sort on the first element of the tuple eg
sort((“abcdefg”, 123456),(“abcdefg”, 12))
will result in an answer of
((“abcdefg”,12),(“abcdefg”,123456))
As you can see from this example, if the first two elements of a tuple
are identical then it will automatically scan down the tuple to find the
next different element. If the a tuple has order 2, and another of order 3,
where the first two elements in the tuple are the same, the order 2 tuple
will be placed first. The sort function will only work if the elements are
all of the same type. If the type is a tuple then the element types in the
tuple must be the same as well. eg
sort((string, ref, num), (string, ref, num))
however sort will not work in the case of
sort((string, ref, num), (num, ref, string))
even though both are tuples, the first element type in each tuple differs.

sort uses a very fast binary tree insertion algorithm. It will cope with
large amounts of data efficiently. The only thing to beware of is that
binary tree algorithms do not handle pre-sorted data efficiently.

sort may (temporarily) use substantial amounts of virtual memory
during its execution.

t2csv (tuple, tbs,
ForEXCEL
, decimals)

string Convert a one-dimensional tuple to a Comma Separated value string.
Escape quote characters by doubling and adds surrounding quotes if
string element contains a comma. tbs is a 0 or 1 value which specifies
trailing blank suppression in string elements. ForEXCEL is a 0 or 1
value which specifies “EXCEL Friendly” behaviour, decimals is an
optional one-dimensional tuple of integers to specify the number of
decimal places required for the corresponding num element.

cryptor string

tuple

string

tuple

cryptor reversibly encrypts the string value.

cryptor reversibly encrypts all string values at the top level of the tuple
and returns a tuple which shares with original except for encrypted
elements.

Content Addressable Memory Operators
cam

cam

cam

()

(M, c, t)

(M, c)

cam

dummy

dummy

Returns and empty content addressable memory value.

Adds an entry into a cam where c is a ref, or a string and t is any value.

Deletes an entry with key c.

Cams will remain extant while they remain in extent then they will be
garbage-collected in the normal way.

Cams are accessed by application to a key value (ref or string) and the
application returns the value associated with string or $undef$ if not
found

cammap (M, L)

dummy M is a cam value and L is a lambda expression of the form fn(c, t) . .
which is applied to each member of the cam in sorted order.

Where F & T are string values defining a range of keys to be mapped.

 14

(M, L, F, T)

Arithmetic Operators
abs ref or num ref or num Returns the absolute value of argument type unchanged

sig (d, v) ref (1 or 0) The predicate is true if argument v is significant to d decimal places.

rc num num Rounds to the nearest cent. (“scientific” rounding)

cents num num Rounds to the nearest cent. (truncated rounding)

sin ref or num num Returns the calculated sine of the argument passed in radians

cos ref or num num Returns the calculated cosine of the argument passed in radians

tan ref or num num Returns the calculated tangent of the argument passed in radians

asin ref of num num Arcsin function returns radians

acos ref or num num Arccos function returns radians

atan ref or num num Arc tangent in radians

atan2 (y, x) num Args may be a mix of ref and num - returns arctan(y/x) in radians.

urefcmp (a, b) ref (1 or 0) Where a and b are both refs. Compares two refs ignoring their sign.

If the unsigned value of a is less than the unsigned value of b, the
return value is negative. If the unsigned value of a is greater than the
unsigned value of b, the return value is positive. Otherwise, the return
value is zero. (obsolete use %< %<= %> %>= instead)

round (num, ref) num Rounds num to the decimal place specified by ref. (“scientific”
rounding)

Predicates (Predicates are operators which return truth values, 0 or 1 in GTL)
istuple tuple* ref (1 or 0) Returns 1 if its argument is a tuple value.

isimage image* ref (1 or 0) Returns 1 if its argument is a image value.

isstring string* ref (1 or 0) Returns 1 if its argument is a string value.

isnum num* ref (1 or 0) True if the argument type is num (64-bit floating point).

isref ref* ref (1 or 0) True if the argument type is ref (32-bit signed integer).

isi64 i64* ref (1 or 0) True if the argument type is a 64-bit integer

isdate date ref (1 or 0) True if arg is a date

istime time ref (1 or 0) True if arg is a time

islambda lambda* ref (1 or 0) True if the argument type is lambda

iswhitespace 1 character string ref (1 or 0) True if the character is a whitespace character

ischild child* ref (1 or 0) True if the argument is child.

issubstring (s, t) ref (1 or 0) True if t is a substring of s. e.g. issubstring(“Old Farts”, “Fart”)
will return 1.

isundef $undef$ ref (1 or 0) True if the argument value is that returned by the @ operator when
applied to an object which does not contain the requested property.

iscontrol control* ref (1 or 0) True if the argument type is a Windows control

 15

Graphic or Screen Operators
Note: all screen (& printer) coordinates are expressed in “twids”, where 1 twid = 1/1200 of an inch. The origin is the
top left hand corner of the scrollable virtual presentation space (VPS), or the top left hand corner of the page 1 on a
printer. The x coordinate increases from left to right and the y coordinate from top to bottom. Many printers have non-
printable margins of about 300 twids.

Basic output in the GTL language is achieved (LISP like) by an expression standing alone. For example:

let S = "Hello World" in
S; NL

The default output destination is the current (scrollable) window. The term Virtual Presentation Space or VPS is used to
indicate the entire output space that can be scrolled to, either vertically or horizontally and it can potentially be many
thousands of pages in extent.

When a string value is output as in the example above, a suitable clipping rectangle is associated with it, to precisely
envelope the string. Where alternate clipping is desired - for example when a string exceeds the width of a pre-defined
field, the clip operator may be used to limit the amount of string displayed.

coord (x, y) coord Moves the caret to a new position relative to the current position. If (x,

y) are num values they are interpreted as mm, rather than twids.
absco (x, y) absco Moves the caret to an absolute position. . If (x, y) are num values they

are interpreted as mm, rather than twids.
clip (l, t, r, b) dummy Defines a default clipping rectangle for subsequent string output. Revert

to natural clipping with clip(0,0,0,0)
line (x, y) line Creates an r-value which will cause a line to be displayed when output.

(x, y) are the absolute coordinates of the end of the line. The line starts
from the current position. The line will be drawn with the current pen
setting. The coordinate position is not changed. If (x, y) are num values
they are interpreted as mm, rather than twids.

rect (w, h) rect Draws a rectangle on the screen at the current position. The arguments
specify the width and height of the rectangle. If (x, y) are num values
they are interpreted as mm, rather than twids.

roundrect (w, h) roundrect Draws a rectangle with rounded corners (200 twid dia.) on the screen at
the current position. The arguments specify the width and height of the
rectangle. If (x, y) are num values they are interpreted as mm, rather than
twids.

polygon ((x0, y0), (x1,
y1), . . .

polygon Creates a value which when output, draws a filled 2-dimensional
polygon on the screen using the current brush and pen settings.

ellipse (xw, yw) ellipse Creates a value which when output, draws a filled 2-dimensional ellipse
on the screen using the current brush and pen settings. If (x, y) are num
values they are interpreted as mm, rather than twids.

pointin ((x, y), v) 0/1 pointin is a predicate which returns 1 if the 2D point passed as its first
argument lies within the object passed as the 2nd argument. The 2nd
argument v may be a rect, polygon, or ellipse value. Note that rect and
ellipse values are only well defined when preceded by an absco call.

boundingrectangle graphic r-
value

4-tuple (left, top, width, height)

bitmap (f, xw, yw) bitmap Displays a bitmap image on the screen. An order 3 tuple must be passed
to the function containing the file name, the width and height of the
image to be displayed. The bitmap will be stretched to fit the specified
rectangle. If either xw, yw are specified as zero, then the aspect ratio of
the image is preserved.

brush (R, G, B) or
nil

brush The values passed to this function set the colour of the brush to be
displayed on the screen. The tuple RV passed to this function must be in
the format of (R, G, B), or if the parameter passed is nil, then the brush
is transparent.

gradient (R, G, B) or
nil

dummy Establishes a linear gradient target colour. Nil disables gradient fill.

 16

horizontal 0/1 dummy Establishes a direction for the gradient rectangles.

pen (R, G, B, W)
or

(R,G,B,W,S)

pen The values passed to this function set the colour of the pen to be
displayed on the screen. The tuple RV passed to this function must be in
the format of (R, G, B, W). i.e. Red, Green. Blue values in the range 0 to
255, and the width if the pen in twids. A width of zero results in a
device dependent width of one pixel.
The optional 5-argument form permits the pen style to be specified – for
example 0 = PS_SOLID, and 5 = PS_NULL for a “transparent” pen.

setrop ref ref This operator establishes the background mix mode for rect objects when
they are painted in the VPS. The value of 13 is the default, and 7 is a
useful value which XOR's the rect's brush colour with the background.
The operator returns the previous mix mode.

textcolour 3-tuple
(R, G, B)

textcolour The values passed to this function set the colour of the text to be
displayed on the screen. The tuple RV passed to this function must be in
the format of (R, G, B)

choosecolor ((R,G, B),C) ((R,G,
B),C)

or

nil

Displays a ChooseColor dialog box to the operator, allowing a standard
or customer colour to be specified. The (R,G,B) argument is the initial
colour selection for the dialog box, and C is a 0 to 16-tuple of custom
colours. C may be nil if there are no pre-defined custom colours. The
result returned has the selected colur in its (RGB) component, and the
tuple of custom colours if any. Nil is returned if the operator cancels the
dialog box.

menucolour () (R, G, B) The 3-tuple returned specifies the current menu colour for the version of
Windows in use, usually a shade of light gray.

syscolour ref (r, g, b) Returns the windows system colour specified by the index passed to
syscolour. Uses the GetSysColour API.

choosefont (s, p, (r,g,b)) (s, p,
(rgb))

Displays a ChooseFont dialog box to allow the operator to specify a font
by type face, point size & colour. e,g,

let Face, Points, Colour =
 choosefont(“Arial Bold”, 10, (255, 0, 0)) in
{ font(Face, Points);
 textcolour Colour;
 “Example text output”
}
The type face string is the name of the type face as known to Windows.
This string may also have appended, any combination of the following
attributes Bold, Italic, Underline, & Strikeout and these refer to the
corresponding style selections and check boxes in the dialog box.

Windows 7 has a bug which affects choosefont - use GTL library
alternative Choosefont.gtl

messagebox (s, t, m)

or

(s, t, m, r)

0/1

or

ref

Display a standard windows message box where the string t is the title of
the box and the string s is its contents. Show buttons according to value
passed as integer m.

If the tuple is of order 3, or r = 0 then Wait for operator response, and
return 0 if cancel clicked, and non-zero if another button is clicked.
Otherwise, the return value is the value returned by the MessageBox API
function.

m = 0 -> OK button
m = 1 -> OK and CANCEL buttons.
m = 5 -> RETRY and CANCEL buttons

beep ref dummy Does a MessageBeep

tone (ref, ref) dummy Musical tone to audio output beep(Frequency, Duration) in Hz and mS.

ask (s, t) 0/1 Displays an OK/CANCEL message box with t as the title and s as the
content. Return 1 if OK clicked.

font (Face, Points) font Sets the current font Type Face and size. The tuple RV passed to this
function must be in the format (typeface, size) – e.g. (“Arial”, 12)

 17

or

(Face, Points,
Width)

or

(Face, Points,
Width,
Colour)

The typeface string may also contain any of the attributes Bold, Italic,
Underline & Strikeout as appendages. e.g. “Courier New Bold Italic”.

Points argument may be ref or num.

An optional 3rd argument permits the width of the font to expressed in
twids.

An Optional 4th argument permits the colour of the font's text to be
expressed a a 3-tuple RGB value.

fontangle ref font angle Sets the orientation of the text in 10ths of degrees. Specify 900 to rotate
the text 90 degrees.

enumfonts () tuple Returns a tuple of strings which are the names of all the TTF fonts
available.

justify 2 tuple dummy Sets the justification. The first element in the tuple is the LEFT or
RIGHT justification, and the second element in the tuple is VERTICAL
or HORIZONTAL alignment. This justify command is to be used in
conjunction with the coord or absco command. LEFT will align the text
to the left at the current caret position. RIGHT align will position the text
at the right of the caret. HORIZONTAL will increment the X position in
the current window after the text that is displayed. VERTICAL will
increment the Y position in the current window to be below the current
text. The current font style and size determine this. For non-“server
reporting” applications the (LEFT, HORIZONTAL) justification is the
default setting.

For server reporting the default is (0,0) as the server report process stores
its own default settings and behaviour. The default behaviour in server
report is to buffer all the text for a line before displaying it on the screen.
Changing the values will result in server report displaying the text as it
receives it. This default behaviour can be restored by using the
justify(0,0) command.

getjustification () 2 tuple Returns the current setting.

clear ()

or

(xo, yo, xw, yw)

or

(xo, yo)

or

c

dummy clear with () parameters, clears the entire VPS and all layers.

With 4 parameters, it clears all the primitives contained within the area
specified by 4 Tuple in the currently established layer (0 to 3). The 4
tuple format is (beginning x, beginning y, x width, y width). If any
argument is of type num it is interpreted as mm.

When 2 parameters are specified, the clear operator will delete only the
topmost element whose top left coordinates are precisely at (xo, yo). The
rectangle occupied by that element will be invalidated, but no other
elements will be deleted. The 2 parameters version will only delete an
element from the current layer.

When a single ref value is passed to clear, the operator deletes all
primitives in the VPS with the specified mousecode or capture code.

cleari ditto ditto Equivalent to clear except no invalidates are done – use invalidate
operator to repaint window when ready.

extent () (x, y) This operator returns a 2-tuple indicating the maximum extent in the x
and y directions of graphics objects which have been output to the VPS.
It forces a recalculation of the extents which is useful after the clear
operator may have destroyed objects at the left or bottom of the VPS.

layer ref dummy Establishes a layer number in the range 0 to 3 for subsequent text &
graphical output to the window. The clear operator will only delete those
output primitives which have been output with the same layer setting as
the call to clear (where clear is called with parameters).
The Print command in the file menu will only include output primitives
in layers 0 & 1. Objects from layers 2 & 3 are for video display only.

 18

indent ref dummy Sets the automatic indentation of the left margin in the window.

page 2-tuple
(xw, yw)

dummy Sets the size of a page to the parameters (x width, y width).
Before page is called the initial default page size is (9900,14025), which
corresponds to A4 in portrait orientation. To use A4 in landscape invoke
page(14025, 9900). Affects the currently selected window. Also
important for print formatting (portrait vs landscape).

landscape 0/1 dummy Force printing to landscape A4

getpage nil (w, h) Returns the current page size setting of the currently selected window.

getselect nil ref, file or
child

Returns a value for the currently selected output destination it may be a
ref value if a socket is being used, a file value if output is going to a file
from the output operator, or a child window value if output is going to a
child window. The value returned by getselect may subsequently be
passed to select to restore the output destination.

getfont nil tuple Gets the current font. The returned tuple can then be passed to the font
operator. (return a 4-tuple (Face, Points, Width, Colour)).

gettextcolour nil tuple Gets the current text colour. The returned tuple can then be passed to the
textcolour operator.

getpen nil tuple Gets the current pen. The returned tuple can then be passed to the pen
operator. (r, g, b, w, s)

getbrush nil tuple Gets the current brush. The returned tuple can then be passed to the
brush operator.

getlayer nil ref Returns a number in the range 0 to 3, being the currently established
graphical output layer. See layer operator and clear operator.

curX nil ref Returns the current X position of the caret

curY nil ref Returns the current Y position of the caret

curI nil ref Returns the current indent value in twids

curL nil ref Returns the current line spacing for the current output font in twids plus
the leading if any

transparent nil or 3 tuple dummy If nil argument, then any transparency information in the image will be
used, other wise specify a tuple of format (R, G, B) which indicates the
colour to be shown as transparent.

intersectrect (R, T) (x, y, w, h) Where R & T are of the form (x, y, w, h) - intersectrect returns 4-tuple.

leading ref dummy The argument in twids is added to the basic line spacing of the font in
force when a LF character is output to the VPS.

printwidthfactor num dummy A scaling factor applied to the font width for a printer device context.
E.g., printwidthfactor 0.965

strent (x, y) string Arguments typically from getclick() Returns a string if the coordinates
fall inside a VPS element. Null string if no match.

vps ()

(x, y, w, h)

tuple

Returns a tuple of data extracted from the content of the Visual
Presentation Space Full details of the tuple format returned are
documented in the chapter entitled VPS Formats below.

This form returns only those primitives encompassed by the rectangle so
defined.

freeze (l, t, r, b) dummy The argument in twids defines an area of the selected window which
becomes unresponsive to mouse moves and clicks – global rubber band
still works. Use freeze(0,0,0,0) to thaw.

graphic tuple dummy Defines a tuple containing reactive graphical data – points lines
rectangles ellipses and polygons, which are reactive to the mouse in real-
time.

(RG_POINT, (x, y))
(RG_LINE, (x1, y1), (x2, y2))
(RG_RECT, (x1, y1), (x2, y2))

It is expected that points defining the location of lines and other

 19

geometric shapes will often be shared tuples so that moving a point also
move or re-shapes the parent graphic.

Database Operators (LILAC Database)
openlilac nil dummy Opens the LILAC database

closelilac nil dummy Closes the LILAC database

is_a34 nil ref 1 -> 34-bit LILAC database in use. 0 -> 32-bit database

lock nil dummy Locks access to the LILAC data base using a lock on the file lock.acc (or lock.a34).
Consistent with action.exe interlocking. Serialised access to records like Company
Data

unlock nil dummy Releases database lock – always sandwich with lock.

setentity string dummy Establish default Group/Company prefix for data base operations. e.g. setentity
“GPSY”

find (rec, s) (k, a) find expects two string arguments. The first argument rec should be the LILAC record
type obtained from the first element of the DDS tuple, and the second argument s the
database key as a string.
e.g. find(InvoiceDDS 0, “000001 “)
find returns a 2-tuple the first element k of which is a string indicating the full LILAC
database key including prefix characters, and the second a is a ref address in the
database of the corresponding record.
The address element will be zero if the key is not found in the database. If the key is
present more than once in the database (like key successor behaviour) then the key
returned will be the last instance.

first (rec, s) (k, a) first expects a two string arguments. The first argument should be the LILAC record
type obtained from the first element of the DDS tuple, and the second argument the
database key as a string.
e.g. first(InvoiceDDS 0, “000001 “)
first returns a 2-tuple the first element of which is a string indicating the full LILAC
database key including prefix characters, and the second is a ref address in the database
of the corresponding record.
The address element will be zero if the key is not found in the database. If the key is
present more than once in the database (like key successor behaviour) then the key
returned will be the first instance.

row (dds, a) n-tuple row reads a record (table row) from the LILAC database and returns it as a tuple.
Argument one is the DDS tuple specifying the record format, and argument 2 is the
address to read from.

nextrow (dds, a) n-tuple Similar to row above, except that the record returned will be the next record of the
specified type, found by means of a serial scan along data.acc from the address a. This
permits audit trail style serial processing of Ledger Entries. Note, the record at a is not
returned it is the next record if any. If no record is found by the end of file, nil is
returned. a is modified to contain the new address. a is set to 0 at the end of file. Only
records from the current setentity are returned unless the setentity is " " in which case
records for all entities are returned.

like (k, a) dummy Modifies the 2-tuple’s 2nd element to be the address of the next like key in the b-tree of
the same record type. If there are no more keys with same key value the 2nd element
will be set to zero.

succ (k, a) dummy Modifies the 2-tuple’s 2nd element to be the address of the next key in the b-tree of the
same record type. The 1st element may also change if the next key is not same as its
predecessor.

succaddress Ref or

(ref,
string)

ref Returns the address of the next record in the database. Example uses:-

a := succaddress(a);
a := succaddress(a, leDDS 0);

scan 3-tuple dummy The first is starting key string and the second is an ending key string. The third
argument is a lambda expression (function) which will be applied to a two tuple for
each key in the database found between the starting key and the ending key. The

 20

lambda expression is passed a 2-tuple argument each time containing the full database
key string, and the address of the record.

scanb 3-tuple dummy Reverse direction version of scan - otherwise common code.

map 4-tuple dummy The first argument is a LILAC record type string. The second is starting key string and
the third is an ending key string. The fourth argument is a lambda expression (function)
which will be applied to a two tuple for each key in the database found between the
starting key and the ending key. The lambda expression is passed a 2-tuple argument
each time containing the full database key string, and the address of the record.

mapb 4-tuple dummy Reverse direction version of map - otherwise common code.

endmap nil dummy When applied within a mapped or scanned lambda expression causes the most closely
enclosing map to prematurely terminate.

inmap nil ref Returns 0 if not currently in a map or scan, or else non zero.

put (dds, t) dummy Creates a new row (record) in the data-base. The 1st argument is the record
specification (DDS) tuple, and the 2nd argument is a tuple containing the fields to be
written. The record is written at the end of data.acc and the key is inserted in the index
in btree.acc. The key need not be unique if LKS behaviour is desired. To prevent LKS
behaviour the application should check for pre-existence of the key prior to using put.

put cannot be called in a map.

putr (dds, t) ref Identical to put in all respects, except that it returns a ref value which is the database
address of the newly created record. The database address is the byte offset, from the
beginning of the file data.acc, of the first byte of the new record.

putr cannot be called in a map.

delete nil dummy delete() should be applied within the evaluation of the mapped function passed to map
– it’s effect is to delete the record (or row) passed to the mapped function during the
execution of map.
delete has no application in any other context.

deleteaddress a dummy Where a is a ref value which is the address of a record in the lilac database. The record
is deleted by writing zeros, and the btree key (if any) is also deleted.

putback (dds, t,
a)

dummy Re-writes a record in the database at an address from which the record was originally
read. If the record to be written is the same size as the record at the specified address, it
is simply written back there. If it is smaller than the one being replaced it is padded
with zero valued bytes, if it is larger than the original, the original is deleted, and the
new record is written at the end of the file. The 3rd argument a is the database address
to rewrite the record.

check (dds, t) string To be used prior to put, putr or putback to check the integrity of the data to be put, with
reference to the dds specification. Returns the null string for valid data and a non-null
error message if an inconsistency is detected. Use when a crash is to be avoided such as
in a server role, where the data comes from a remote client who may have an out-of-
date dds picture.

addbtree (k, d) dummy Adds the key and disk address to the btree.

newrecord (dds, t) (k, d) Adds the new record to the end of data.acc and returns the database key and disk
address to be used in a call to addbtree.

dbasepointer ref dummy Writes (initialises) the LILAC Database Pointer, also re-computes the checksum in the
DBStatus record at address 0.

actionsearch (soc,
dds, k,
da,
count)

(t1, t2,
t3, …)

soc is a TCP/IP connection to action established using the connect operator. dds is a
record specification (DDS) tuple. k is the database key as a string (must be 50
characters in length). da is the disk address of the record (maybe 0). count is the
number of lines to be returned. The maximum number of records that can be returned
can be determined by this algorithm:-

x := 8192 / (116 + sizeof(5 – no of keys in record))

116 := 56 + 4 + 56

For example in a Order_Head we have:-
The 2 key fields are the NameKey and the OrderNo

 21

X := 8192 / (116 + sizeof(5 – 2))
X := 8192 / (116 + 4 + 8 + 8)
X := 60

If hyperlib.gtl is included, then one may call the GetActionSearchCount gtl function
which takes a single argument which is the record specification (DDS) tuple.

GetActionSearchCount(ohDDS);

This can be used in the following context:-

actionsearch(Action, ohDDS, " "!(0, 50), 0,
GetActionSearchCount(ohDDS));

This operator returns a tuple of tuples. The format of the tuple is (key, display string,
disk address)

actionread (soc,
dds, da)

tuple Retrieves a record (table row) from the LILAC database via action and returns it as a
tuple.

soc is a TCP/IP connection to action established using the connect operator. dds is a
record specification (DDS) tuple. da is the disk address of the record. Must not be zero.

actionnew (soc,
dds, t)

da Creates a new row (record) in the data-base via Action. soc is a TCP/IP connection to
action established using the connect operator. dds is a record specification (DDS) tuple.
t is the tuple containing the fields to be written.

actionwrite (soc,
dds, t,
da)

dummy Re-writes a record in the database via action at an address from which the record was
originally read. soc is a TCP/IP connection to action established using the connect
operator. dds is a record specification (DDS) tuple. t is the tuple containing the fields to
be written. da is the disk address of the record. Must not be zero.

actionfind (soc, t,
k)

da soc is a TCP/IP connection to action established using the connect operator. t is a
record type, typically the first element in the specification (DDS) tuple. k is the key to
look for.

actionnext (soc, t,
k, d)

da soc is a TCP/IP connection to action established using the connect operator. t is a
record type, typically the first element in the specification (DDS) tuple. k is the key to
look for. D is the disk address of the current key, can be zero.

actionprev (soc, t,
k, d)

da soc is a TCP/IP connection to action established using the connect operator. t is a
record type, typically the first element in the specification (DDS) tuple. k is the key to
look for. D is the disk address of the current key, can be zero.

readbytes ref byte A binary read operation from the LILAC data.acc file is performed. The argument is
the byte offset in data.acc The number of bytes read and thus the size of the byte result
is determined by the record size found in data.acc which is 16-bit field in the 1st two
bytes of the record.

writebytes (b, a) dummy (re)-writes a binary record b (of type byte) to the LILAC database which may have
been read by readbytes above. If a is zero, the record is added at the end of data.acc
and added to the btree. If a is non-zero then the record is written at that address, in
which case it must be the right size for that record location.
When a is zero, the Company Id field in the record is overwritten using the current
setentity Id before writing!

readbad ref byte Same as readbytes except always returns data even when error conditions exists. Use
after a bad readbytes to get the damaged data.

readdata (a, n) byte Read binary data from data.acc (or data.a34) n bytes from address a nor record
structure – required for backup purposes. (a is i64 & n is i32)

datasize () i64 Returns the current file size of data.acc (or data.a34) as a 64-bit integer.

Semaphore Operators
semaphore (c, m, Name) (s, e) Creates a semaphore RV. The first argument is the initial count of the

semaphore. The second argument is the maximum count of the
semaphore. The third argument is the name of the semaphore.
The name is limited to 260 characters. Name comparison is case
sensitive. If the name matches the name of an existing named

 22

semaphore object, this function requests
SEMAPHORE_ALL_ACCESS access to the existing object. In this
case, the Initial Count and Maximum Count parameters are ignored
because they have already been set by the creating process. If the name
is the empty string “”, the semaphore object is created without a name.
e is an error code – if non-zero e is code returned by GetLastError.
If the semaphore has already been created by another process e will be
ERROR_ALREADY_EXISTS = 183 and s will be the semaphore.

pee semaphore dummy The traditional Dijkstra pee function. If the semaphore is non-
signalled, the thread will wait until the semaphore is signalled (i.e. the
count is non zero).

vee semaphore dummy The traditional Dijkstra vee function. This function increases the
semaphore count by one.

peewait (semaphore,
ref)

ref Same as the pee operator except that it will wait the specified number
of milliseconds. The return value could be any one of the following:-

-1: unknown error
0: the semaphore was signalled
1: the timeout interval elapsed
2: the thread that created the semaphore exited without signalling the
semaphore.

closesemaphore semaphore dummy Closes the handle to the semaphore. Once this function returns you can
not call pee, peewait, vee, getsemaphorecount or closesemaphore.

getsemaphorecount semaphore ref Returns the count of a semaphore. The count indicates weather or not
the semaphore is signalled. The signalled state is not changed.

wakeup (semaphore,
date, time,
ref, ref)

Dummy Signals the semaphore when the system time of the computer matches
the date and time pasted in. The operator then increments the
“wakeup” time by the 2 refs. The first ref refers to days and the second
ref refers to minutes. The following code demonstrates how to wake up
at the 8am every day
Wakeup(sem, date(today()), s2t(08:00), 1, 0)

File Operators
getsystemdrives () tuple e.g. returns ((C:\, 3, V), (D:\, 5, V))

Type 3 is a fixed drive.

Type 5 is a CDROM drive.

V may be volume information.

Possible types:
#define DRIVE_UNKNOWN 0
#define DRIVE_NO_ROOT_DIR 1
#define DRIVE_REMOVABLE 2
#define DRIVE_FIXED 3
#define DRIVE_REMOTE 4
#define DRIVE_CDROM 5
#define DRIVE_RAMDISK 6

getspecialpath ref string let Desktop = getspecialpath CSIDL_DESKTOPDIRECTORY in

etc – see Microsoft CSDIL definitions.

 23

dirlist string

(string, date)

(string, date, date)

tuple Returns a tuple of files based on the pattern passed in as the
parameter. If a directory matches then a ‘\’ is appended to the end
of the directory name.
let f = dirlist(“c:*.*”) in

f

might display.
(“winnt\”, “autoexec.bat”)

dirdetail string tuple Returns a tuple of tuples of the form:

(Date, Time, FileName, Size)

For each matching file of directory – Date & Time are of last
write, and size in is in bytes.

servers () tuple Returns a tuple of strings identifying the “servers” visible on the
network.

shares string or () tuple The shares operator returns a tuple of strings identifying Windows
shared folders visible on a specified server. E.g.
shares "\\www";

returns
(IMail, Resene, IPC$, Inetpub, WebSites,
Work, lilac3, LogFiles, ADMIN$, Data3, C$)

shares()

returns the shared folders on the local computer.

shares will return a string in the event of an error.

sharepath string string Obtains the physical path on the current computer of a network
share e.g. sharepath “Users” returns “c:\Users”

input string file Opens a file so that data can be read in from it. The parameter is
the file name. If an error occurs a string value is returned
containing diagnostic information

output string file Opens a file so that data can be written to it. If the file already
exists the contents of the file are destroyed. If an error occurs a
string value is returned containing diagnostic information

append string file Opens a file so that data can be written to it. If the file already
exists, it is opened and the file pointer is moved to the end of the
file. If the file does not already exist it is created.

select file or

child or

 ref or

emfdc

dummy Selects the output file. Use parameter 0 to return output to the
screen.

If the argument is of type child output is switched to the VPS of a
child window. If the argument is of type ref and is non-zero,
output is sent to the Socket connection identified by the ref
integer.

If the argument is of type emfdc the wF2_EMFOutput windows
flag is turned on.

pshsel child

0

file

dummy Use for selection of a child window for output, in preference to
select above – match with a popsel() to return selection to an
“outer” window.

pshsel 0 (temporarily) selects the outermost window, and then
popsel will revert to an inner window.

Switch output from a window to a file.

popsel nil dummy Must always sandwich with a pshsel.

 24

flush file dummy Writes all unwritten content to the file.

close file dummy Closes a file stream.

tin file tuple Return a tuple constructed from the next input line interpreted as a
CSV file line.

stin file tuple Return a tuple constructed from the next input line interpreted as a
CSV file line. All values in the tuple are forced to be string RVs

lin file string Return a string RV of the next ASCII line - strip CR chars if any,
and remove LF from end. Multiple LF characters will be returned
as null strings

bin (file, adr, length) byte Binary record read from file at address adr, size length

token file string Returns lexical token from input stream. (CSS Compatible)

htmltag file tuple Parses the input file to find the next HTML tag delimited by <>
characters. Returns (p, t, q0, q1, q2 , . . .) where p is any text
preceding the tag, t is the tag, and the qn string are white space
separated qualifiers.

xml file tuple Parses data from the input file looking for a well formed xml
entity. Returns a tuple representation of the XML data, nested as
required. If errors are detected in the structure of the XML data a
string is returned reporting the error.
Skips any <?xml style tags by detecting the ? character.

attribs string tuple Given a string of the form aaaaaa=”bbbbb”
ccccc=”ddddd” returns an object (forgiving about unquoted
values).

css string tuple Given a string of the form aaaaaa:”bbbbb”;
ccccc:”ddddd” returns an object (forgiving about unquoted
values).

json string object Return a GTL object (Name Value Pairs) with quotes removed
from names & string values – possibly nested, by parsing JSON
formatted data.

eof file ref
(1/0)

Determines if the EOF has been reached.

filecopy (Destination, Source) string Format of the tuple is (to file, from file). If the to file exists it is
overwritten unless read only permissions are set on the file.
Returns the null string on success, returns an error string from
Lennox error module based on Microsoft error number to indicate
failure.

movefile (From, To) string Uses the API MoveFile function to “rename” a file or folder. Note
order of arguments is reverse of filecopy. Returns error string (null
string for success).

installfile (To, From) string Copies a file and removes the read only permission if that is set.
Does not overwrite newer files. Returns GLE string on error.

createtempfile (Path, NamePrefix) string Returns a unique temporary file name.

create_dir string ref Creates a directory. The return value determines if the directory
could be created or not. If the return value is 0, then the directory
was not created.

file string filemap Creates a mapped view of the file in virtual memory, represented
by a special RV of type filemap. The length operator may be
applied to a filemap RV to return its length in bytes. The close
operator should be applied to a filemap RV to deallocate its
resources.
If the file in question does not exist the operator returns a filemap
value with a length attribute of zero.

invalid filemap 0/1 Returns 1 if the handle value of the filemap is
INVALID_HANDLE_VALUE or fails to Map file into virtual
memory.

gle () string Get Last Error from win32 API

filenametype string tuple Given a file path return a 3-tuple e.g. (test.xlsx, xlsx, Microsoft

 25

Excel Worksheet)
getexticon (ext, 1/0) icon Returns an icon for a file type 2nd arg specifies small icon.

loadicon (executable, i, Small) icon Extracts an Icon from a executable file.

filesize string int64 Returns 64-bit file size - returns 0 if file non-existent.

filetime file or filemap 8-tuple After a file has been opened with input or file above, the filetime
operator may be used to obtain its modification date and time. The
tuple returned contains 8 ref’s from MS SYSTEMTIME structure.
wYear - Specifies the current year.
wMonth - Specifies the current month; January = 1, February = 2,
and so on.
wDayOfWeek - Specifies the current day of the week; Sunday =
0, Monday = 1, and so on.
wDay - Specifies the current day of the month.
wHour - Specifies the current hour.
wMinute - Specifies the current minute.
wSecond - Specifies the current second.
wMilliseconds -Specifies the current millisecond.

localfiletime file or filemap 8-tuple As filetime above except returns local time not UTC.

systemtime nil 8-tuple The result is similar tuple to that is returned by filetime, except
thet the time in question is from the computer’s clock in UTC.

localtime nil 8-tuple Local date time in same standard format

timezone nil ref Returns the signed offset from UTC in minutes. AEST = 600

fileattributes string ref Returns a 32-bit value from the Windows API GetFileAttributes
function. (fileattributes F) && FILE_ATTRIBUTE_DIRECTORY
determines if F is a directory.
In the file does not exist fileattributes returns -1

getcurdir nil string Returns the current working directory. The initial default working
directory for a GTL program is the same folder containing the
primary source file.

setcurdir string string Changes the current working directory. Returns “” on success and
an error message string on failure.

filedelete string string Deletes a file specified by the parameter. If the delete succeeds or
the file does not exist in the first place, the null string is returned.
If there is an error then an error string is returned.

delete_dir string ref Uses API RemoveDirectory - returns non-zero on success – use
GLE to get error string.

save (string, byte) string Writes a file on the disk using the binary image from the byte
argument and the path indicated by the string. Returns the null
string on success, and an error message string on failure.

savepdf (string, ref) dummy Creates a PDF file from the present VPS. The string is the file
name with path as required. The 2nd (scale) parameter is a
percentage.

pdfopenfile string (h, p,
w, h)
or
string

Opens a PDF file for direct access using the Quick PDF Library
API. Returns a handle and the number of pages in the document,
or an error string. W, h are the width & height of a page in
numeric points values.

pdfclosefile ref string The argument is a handle returned by pdfopenstring. Returns a
null string on success and an error string on failure.

pdfmergefiles (string, string, string) string Combines two PDF files into one. Argument one & two are the
input file names & argument three is the output file name. Returns
null string on success.

pdfextractpagetext (h, p, Opt) string Returns all the text on the specified PDF page in a variety of
possible formats depending on the Opt parameter. Opt 0 provides
plain text with no coordinate data. Opt 3 is most useful

pdfpagecontent (h, p) string Returns all the content on the specified PDF page in a fairly
obscure encoding.

 26

pdfunlock string (p, w,
h)

Opens a PDF file and returns the number of pages and the width &
height of a page in numeric points values

pdfout (p, dpi) pdf Returns a pdf value which may be output to the VPS, p is a page
number in the range returned by pdfunlock.

pdfgetpagetext (p, Opt) string Same as pdfextractpagetext above for a pdfunlocked file.

gle nil string Returns a string describing the GetLastError value from the
Windows API.

dword (filemap, ref) ref Returns a 32-bit value formed from the 4-bytes at the byte offset
indicated by the second argument. The 1st argument may also be a
byte or sharedmemory value

word (filemap, ref) ref Returns an (unsigned) 16-bit value formed from the 2-bytes at the
byte offset indicated by the second argument. The 1st argument
may also be a byte value

netconnections nil tuple Returns a tuple of 3-tuples, each of which identifies a file open on
this server from the network ((FileId, LocalPath, User) ,)

netfileclose ref string Argument is a FileId obtained from netconnections above. Forces
the file to close. Requires Administrator or Server Operator
membership.
Returns null string on success or error string on failure.

assignb (b, n, x) dummy Update byte value b at offset n with 8-bit value x

assignw (b, n, x) dummy Update byte value b at offset n with 16-bit value x

assignd (b, n, x) dummy Update byte value b at offset n with 32-bit value x

extractpdf byte (s, e) Attempts to find an embedded PDF doucmnet in the byte object by
Seargcon for %PDF & %%EOF seqences. Use the ! operator to
extact the PDF file from the byte object B!(s,e-s)

Enhanced Meta File (EMF) operators
openemf string emf Opens a disk based EMF file. To play an EMF file, output the return

value. Use close to close the EMF file.
emf_create string or

nil
emfdc Creates a new disk or memory based EMF file. Returns the handle to the

EMF’s device context (HDC) for use with the select operator.

emf_close emfdc emf Closes the EMF device context. No further output to the device context
can occur once it is closed. If the emfdc is selected, you must call select
0 before closing the emfdc.

emf_getdimensions emf (x, y) Returns the dimensions of a EMF.

rotateemf90 emf emf Rotate EMF 90 degrees – useful for portrait to landscape conversion

emf_copy (emf, s) emf Create copy on disk with s as filename

Clipboard Operators
clipcopy string,

tuple or
bmp

dummy The argument is placed in the clipboard. If the argument is s string
the clipboard will contain simple text which may be pasted by any
windows application. If the argument is a tuple then the clipboard
will contain an ETR which will typically only be sensibly
interpreted by a GTL program.

clippaste nil (type, data) Return the contents of the clipboard as a string, tuple or bmp or
tuple of dropped files depending upon how it was copied there.
type = 0 -> Empty Clipboard
type = 1 -> String
type = 2 -> Tuple
type = 3 -> BMP
type = 4 -> Dropped Files (data is a tuple of strings)

clipcopyfile string dummy The argument is the full path to a file which is to be copied to the
clipboard.

Menu Operators

 27

menu 2-tuple menu Returns a menu RV. The 1st element in the tuple is used to determine the
menu item name and location. Lennox Computer has established a
standard menu-naming scheme. The location of the menu item is
determined by the ‘_’ in the string passed as the 1st element in the tuple
menu(“Edit_Paste”, 45)
will place a Paste menu item in the pop up menu Edit. If the pop up
menu Edit does not exist, it will be created.

enable menu dummy Enables a menu item.
disable menu dummy Disables and greys a menu item.
wmcommand nil

ref (1) Returns the value of the menu item selected by the user. It also
updates any fields displayed.

(2) If mouseactive display objects are visible in the window,
wmcommand returns the mouse code of any display object that
is left mouse clicked.

wmcommand 0 – returns a WM_COMMAND message from the
outermost parent window.

wmtraffic nil

ref

ref Returns the number of wmcommand(s) ready to be processed by
wmcommand. If wmtraffic is non-zero the next call to wmcommand is
guaranteed not to busy-wait.

wmtraffic 0 – check for traffic in the outermost parent window.

removemenu ref dummy Where the argument is the id of a menu item to remove from the menus

Input/Output Operators
kb nil

0

string Waits for the user to press a key and returns a character value to the
calling function.

The values returned are standard ASCII mostly. If the window flag
wF_AllKeyStrokes is set, then arrow keys return ANSI esc sequences.

Control characters are returned naturally, except that shift-tab is
translated as char 14.

If zero is passed as a parameter the keyboard buffer of the outermost
parent window is used,

shifted () ref 1 -> the Shift key is down.

kbtraffic nil

0

ref returns the number of characters in the keyboard input buffer 0
otherwise. If kbtraffic returns non-zero, kb is guaranteed not to busy-wait
next time it is called.

A zero parameter makes kbtraffic inspect the keyboard buffer of the
outermost parent window.

peekkb () string Returns a 1 character string or a null string if kb buffer is empty.
peekesc nil string Returns the 2 character escape sequence without removing them from the

queue. This call will not block if there are not 3 characters in the
keyboard queue, however the caller will receive garbage. Should be used
after a call to kbesc().

kbesc nil ref Returns 1 if there are at least 3 characters in the input buffer and the first
is an ESC character, otherwise returns 0.

 28

field 6-tuple or
7-tuple

field field(title, lvalue, x, y, w, j [, c])
Creates an R-value which when output, displays a field on the screen
designed for text input. Regardless of the number of parameters used, the
first 6 parameters for both field functions are the same. The first
parameter is the title of the field, the second is a RV containing the initial
text to be displayed in the field. The third and the fourth parameters
define the top left-hand corner of the input field. The fifth parameter
defines the length of the field, and the sixth parameter defines the
justification inside the input field (LEFT or RIGHT).
let invoice = “000002” in
field(“Invoice Number: ”, invoice, 2000, 1000,
4000, LEFT);
However the 7th parameter is the WM_COMMAND value to send when
the user presses enter in that field. This only works on the last field on a
page.

invalidate field

()

dummy Causes the re-display of the data in a field after it has been changed by
internal processing.

With nil arg does an invalidate rect for entire client area.

setfieldfocus field dummy Ensures that the caret & keyboard focus are in the specified field.
getfieldfocus () field Returns the field value which has the current keyboard focus.
currentfield () (l, t, r, b) Rectangle of current field
underlinetext 0/1 dummy Text in fields to be underlined.
mouseactive ref dummy If the argument is non-zero then subsequent output to the display

window will be active to the mouse cursor. That is to say a dashed
rectangle will appear around the output object when the mouse cursor is
moved over it, and the wmcommand operator will return that code if the
left mouse button is clicked over the output object. If the argument is
zero subsequent output objects will not react to the mouse.
This applies to any visible output in the window. When the left mouse
button is down a red rectangle is shown to provide dynamic visible feed-
back to the operator.
Any object created with mouseactive behaviour should not straddle a
page boundary.

hotcolour (r, g, b) dummy Specify a colour for mouseactive objects when the mouse cursor is over
them (a “hover” colour). The default hotcolour is a rich gold.

rcoffset ref dummy e.g. rcoffset 10000000 – the argument will be added to the
mouseactive code returned via wmcommand to indicate a right click
rather than a left click on the active object. The initial value before any
call to rcoffset is 0

url string dummy e.g. url “http://www.lennox.com.au” all objects created subsequently will
be associated with the url until a url “”; is issued.

getclick () (x, y) Returns the (twid) coordinates of the last mouse up (left or right click).
Includes Scrolling but not zoom.

rs232c (C, B, P) 0/1 Open Coms port for I/O e.g. rs232c(“COM1”, 9600, “N”) to
open comms port 1 at 9600 baud with no parity. Pairty may be specified
as “N”, “M”, “E”, “O”. or “S”. The return value indicates success or
failure.
Only one Coms port may be open at a time. There is a convention that
upper case "COMn" turns on hardware handshaking and lower case
"comn" does not.

serialin () string Returns the data from the comms port input buffer – characters are
returned as a single string from 0 to n characters in length. If there are no
LF characters in the comms input buffer, serialin will return all the
characters in the buffer as a single string, otherwise it will return a string
comprising the characters up to and including the first LF character.

serialout string dummy Outputs the string on the comms port.
serialflush () dummy Data output by serialout is buffered in memory. Use serialflush to cause

the actual transmission of the data. (Transmission is automatic upon the
buffer becoming full, or closecomms being called).

serialtraffic () ref returns the number of characters in the comms port input buffer

http://www.lennox.com.au/

 29

seriallines () ref returns the number of LF characters in the comms port input buffer. If
seriallines returns non-zero, serialin is guaranteed to return a string
terminated by (the first) LF character in the comms input buffer.

closecomms () dummy Shuts down a Com port opened by rs232c above, and frees resources.
Only one Com port may be open at a time in a given GTL execution. So
closecomms must be used to prior to a 2nd call to rs232c.

capture ref dummy If the argument is non-zero any rectangles created (output) until a
capture 0, will capture mouse input. That is to say the mouse cursor will
change to an I-beam over the rectangle, and any left or right mouse
clicks will be sent via the mousein operator.

rubberband ref dummy Similar to capture above, except the mouse cursor shown in the affected
rectangles will be a cross, and a rubber band rectangle will be created
and dynamically changed while the left mouse button is held down.
Rubber band rectangles will be left on the window until another left
mouse down. In addition, rubberband 0 may be used to turn off a rubber
band rectangle.

mousein () (c, r, x, y,
curs)

r =
0 left up,
1 right up,
2 left down,
3 right down,

If there is any mouse clicks captured a 5-tuple will be returned. c is the
argument from capture or rubberband identifying the rectangle, r is 0 for
a left click a 1 for a right click etc, x, y are coords in twids. If the mouse
input fifo is empty, the execution thread will block until a mouse click.
See mousetraffic below.
If the wF_NotifyAllMouseMsg window flag is set then mouse traffic
from anywhere in the client area will be returned, otherwise only mouse
clicks from within captured rectangles will return data via mousein.
The curs result indicates the type of mouse cursor presently being used:
0 : Not Sizing
1 : NS Sizing Double Arrow
2 : WE Sizing Double Arrow

anchor () (x, y) Coordinates of the last Left Button Down event
mousetraffic () ref Returns 0 if the mouse input fifo is empty. If mousetraffic returns non-

zero, mousein is guaranteed not to block.
mousemove ref dummy Non-zero arg turns on real-time mouse move capture (not often

necessary). When turned on wmcommand() returns four values (a, d, x,
y) where a is the argument passed to mousemove, d is 1 if the left mouse
button is down and x, y are the coordinates of the WM_MOUSEMOVE
message.

mouseup ref dummy Establishes value to be returned on left mouse up event.
mousewheel ref dummy Non-zero arg turns on capture of mouse wheel activity in the currently

selected window. wmcommand() returns this code followed by a signed
multiple of 120.

mousestate () 0/1 Returns 1 if the left mouse button is down.
hourglass 0/1 dummy hourglass 1; turns on the hourglass mouse cursor, hourglass 0; restores

the previous cursor.
setcursor 0/1 dummy setcursor 1; turns on the hand mouse cursor, setcursor 0; restores the

previous cursor.
timer (c, t) Dummy Creates a timer which returns a WM_COMMAND message with a value

of c, (received via the wmcommand operator) every t milliseconds.
Calling timer with t = 0 stops the timer.

getanyinput nil (w, x) Returns a 2 tuple. Where w = 0, x = output from kb(). Where w = 1, x =
output from mousein(). Where w = 2, x = output from wmcommand().
Where w = 3, x = 0, notification that a resize of the window has
occurred.

 30

print string

(string,
from, to)

dummy Where string is the name of a printer, send a print out-of the contents of
the VPS to the printer in question without displaying a dialog box.
For example:

print "hp LaserJet 1300 PCL 6";

print with the null string will display a dialog box.

The 3 arg form allows a from & to page number to be specified as ref
values.

copys ref dummy Specify the number of collated copies to print using the printer driver’s
built-in multi-copy ability. Default is one.

printermargin (x,y) dummy Specify a left-shift and an up-shift for the printed image in twids. Note
GTL tries to implement nonprintable margins using data from the printer
driver, but many (Asian) printer drivers don’t do this very well so this
operator provides a manual override.

printaspect (x, y) dummy The ratio x:y determines the aspect of fonts when rendered on a printer.
e.g. printaspect(17, 40);

duplex 0,1,2 or 3 dummy If the printer supports double sided printing – use it
1 -> Long Edge Binding
2 -> Short Edge Binding
3 -> Simplex

rawprint (p, s) string p identifies a printer, and s is the raw data to send to the printer. The
whole document (label, etc) should be assembled in s before a single call
to rawprint, as the function submits a job to the Windows print spooler.

getdefaultprinter () string Returns the name of the windows default printer.
setdefaultprinter string string Change the default Windows printer, result is null string if no error.
tooltip ref or

tuple
dummy Displays a tooltip when the mouse is in the mouseactive or capture

primitive rectangle. If just a ref is passed as an argument, then tooltips
are disabled for this primitive. Otherwise the formats are:-

(code, tip string)
(code, tip string, title)
(code, tip string, title, image)

If either tip string or title is an empty string, then the tooltip will not
display either the tip string or title. This is useful when wanting to show
an image without either a tip string or title.

Call tooltip 0 to remove all tooltips.

doubleckicktime ref dummy Set the Double Click interval in mS

Time and Date Operators
time ref time Converts a ref into time. The time is the number of seconds since

midnight.
atodate ref ref Converts a ref into ATO formatted time. The ATO formatted time is

DDMMYYYY. The date is the number of days since January 1st 1900.
date ref date Converts a ref into a date. The date is the number of days since January

1st 1900.
today nil ref Returns the number of days since 1/1/1900 based on the system date.

Use date(today()) to get a date RV
clock nil ref Returns the number of seconds since midnight from the computers’

clock. Use time(clock()) to obtain a time RV
milliseconds nil ref Returns the number of milli-seconds since midnight from the computers’

clock.
atodatecomp (a, b) ref Compares two ATO date formats of the form 01072019 (refs) – returns

 -1, 0, 1

 31

Network Operators (client context, server context, either)
ping (IP, mS) ref or string Returns a ref value in mS for the ping response if any – failure or

timeout return a string
computername IP string Returns the fully qualified domain name of the computer at the specified

IP address
connect (host,

port)

(host,
port, tries)

(host, port,
tries,
async)

ref
(or string if
there is an
error)

Client/Server connection to remote TCP/IP Server. Arguments are of the
form (“203.34.177.3”, “3001”) i.e. IP address of client computer and
TCP port that the server is listening on. connect returns a socket as a
small integer which may subsequently be passed to recv, send or select.
This is an interface to the WIN32 sockets version of Berkley sockets.
Where DNS is in operation, the 1st element of the argument may be a
fully qualified host name e.g. “lilac.lennox.com.au”
If connect fails, it will return an error message string. If it succeeds it
will return an integer identifying the socket. Use close to terminate the
connection after the last response has been received.
The optional 3rd argument is the number of time to re-try the connection.
If it is omitted then there will be 10 tries.

The optional 4th argument provides for asynchronous receive. It is passed
via wmcommand() when data is available.

secure (s, m, h) ssl Establish SSL/TLS encrypted connection. s is a socket number from
connect above, and m = 0 returns certificate data, m = 1 returns an ssl
value which may be used in place of a socket value for, send, recvsocket
and ready operators. h is a string argument which is the host name of the
server to establish Server Name Indication (SNI) when required – h may
be the null string, if SNI is not required.

listen (h, p) string – IP
Address

Establishes a TCP/IP Server listening on the port p, h is IP address as
string e.g. “203.34.177.3” and p is port as ref e.g. 80 N.B. if h is the null
string “”, any address will be used. listen returns a string indicating the
IP address upon which it is listening.

accept () ref accept is optional - only required for clients which connect and then
expect the server to be the first with data. If the client is the first with
data then the server can go straight to recv.

certify (s, c, k) ssl Server side SSL/TLS encryption – s is a socket from accept, c is
certificate path and k is key path.

recv nil 3-tuple Receives data from a TCP/IP client, connecting to the port specified in
the preceding listen . Result is of the form (S, Data, Good), where S is a
ref identifying the socket, Data is a string RV of data received, and Good
is ref Boolean value which is 0 if the client has disconnected.

recvsocket ref string Receives data from a TCP/IP socket (client or server) and returns it as a
string. GTL execution thread will busy wait (with sleep). Suitable for
TELNET or SMTP type interaction.
N.B. Returns null string when server closes connection.

recvbyte ref byte Similar to recvsocket except handles binary data and returns a byte. Uses
a 10 mega-byte buffer – suitable for handling large image, audio or video
files e.g. in a HTTP client context.

recvline ref string Similar to recvsocket, except that the input is guaranteed to be broken
into individual strings for each line received. A line is terminated after a
Line Feed character (char 10), or before an escape character (char 27).
The Line Feed or escape characters are included in the string returned.
This concept is necessary because on TCP/IP stream circuits, even when
data is sent as individual lines, the use of the Nagle algorithm will
coalesce these into single large message for network transmission.

recvblock nil 3-tuple Similar to recv above, except buffers characters till a carriage return is
received, and returns strings starting with esc or control char.

ready ref 0/1 When applied to a socket, returns 1 if there is data available, 0 if not. Or
SOCKET_ERROR in the case of an error.

 32

oktorecv nil 0 or Socket When a listen has been established, oktorecv will return 1 if data is ready
from any client connection. Zero means idle.

oktoaccept nil 0/1 When a listen has been established, oktoaccept will return 1 when accept
is guaranteed not to block.

send (S, Data) string

filemap

byte

image

Transmits data (back) to a TCP/IP Client. Argument is of the form (S,
Data) where S is a ref identifying the socket, which must have been
obtained from a preceding recv call, and Data is a string to transmit.
send also works with a filemap value, and transmits the entire file - this
is used by Lennox Computer's web server application for example.
send returns the null string unless there is an error in which case it
returns the error string. A byte value is sent as binary data.

sendasync (S, H, F) dummy Similar to send above, but in addition creates a new thread for processing
the send and returns in the current thread immediately so a web server
may process further requests while a large file is being transmitted.
H is a string of Header data (e.g. HTTP Headers), and F is a path for the
file to send – useful for larger files where server responsiveness must not
be compromised.

sendshared (S, G, N,
B)

dummy Creates a shared memory object and runs a GTL program to provide data
via the shared memory which is sent asynchronously to the socket by a
background thread. S is the socket, G is the GTL program, N is the name
is the shared memory and B is the buffer size.

passdata (N, D) string Passes data D back to sendshared caller via shared memory N

recvpacket ref string Receives data from to a TCP/IP Server. Argument is a small integer
socket id returned by connect. The result is a string. It is assumed that the
1st four bytes received are the overall size of the data and they are
removed.

sendpacket 2-tuple dummy Transmits data to a TCP/IP Server. Argument is of the form (S, Data)
where S is a ref identifying the socket, which must have been obtained
connect, and Data is a string to transmit. sendpacket computes the
overall size of the data and perpends 4 bytes containing that integer.

The Data may also be of type byte to permit the transmission of binary
data.

recvchunk (s, n) string Returns when precisely n bytes of data have been received by client on
socket s – suits Transfer-Encoding: chunked situation.

etrrecv nil (s, data,
good)

Similar to recv, except that Data is a tuple transmitted as an ETR.
The data is in the form of a tuple unless an error occurs in which case the
data is s string identifying the error.

etrsend (s, data) dummy Similar to send, except that data is a tuple to be transmitted as an ETR

etrrecvpacket ref

(ref, var)

tuple

Similar to recvpacket, except the return value is a tuple which has been
transmitted as an ETR.
The result is in the form of a tuple unless an error occurs, in which case
the result is a string identifying the error.

The alternate arg form allows for a progressbar variable.

etrsendpacket (s, data)

(s, data,
var)

dummy similar to sendpacket except that data is a tuple to be transmitted as an
ETR.

Form with 3rd argument available to permit the specification of a
progress variable.

shutdown ref dummy Applied to a small integer S identifying a socket, causes WinSock to
perform an orderly shutdown of the TCP virtual circuit. Typically used
to disconnect a client after the server has sent everything in a stateless
server context e.g. HTTP server. Note a HTTP client will disconnect
eventually anyway, but this seems to cause resource leakage on the
server.

ipof ref string The argument should be the socket number returned by recv, the string
returned is of the form “203.34.177.2” being the IP address of the client
computer from which the data was received.

 33

ip12of ref string The argument should be the socket number returned by recv, the string
returned is of the form “203034177002” being the IP adddress of the
client computer from which the data was received, as a fixed length 12
digit string.

hostname nil string Returns the fully qualified host name of the local computer as a string
RV e.g. “www.lennox.com.au”

lookupdns string string Argument is a fully qualified host name e.g. “lilac.lennox.com.au”, result
is a IP address in string form e.g. “203.34.177.3”. The result may be
passed as the 1st argument to listen.
If the host name is not found in the DNS the result will be "0.0.0.0"

dnsquery (s, t) ref or string Queries the DNS system - s is a string being queried typically a host
name or a domain name. If t = 1 an A record is queried and a ref IP
address returned. If t = 15 an MX record is queried and the hostname of
the mail server returned.

dnsupdate (n, i, d, u,
p)

string n is a fully qualified domain name, i is a binary IP address, d is a
Microsoft domain, u is a user name and p is it’s password.
Dynamic DNS update of the A record for the FQDN if access permitted.
Credentials are for an appropriate (Administrator) on the DNS server.

macaddress ref string Returns a string of the form 203.34.177.281 00-24-8C-48-24-56
That is to say an IP address and a MAC address separated by a space
character.

The argument allows handling of multiple adaptors 0 retrieves the 1st and
1 the 2nd and so on. If no adaptor is found the null string is returned.

adapters () tuple Returns a tuple of tuples for each network adapter (Name, IP, DNS)

Diagnostic Operators

debug String “” Presents a dialog box to the operator, indicating the GTL module
name & line number as the title and the string argument as the body
text. Presents OK & Cancel buttons. Clicking OK continues
execution, Cancel terminates the process.

linenumber () ref Returns the source file line number of the current GTL expression.
exeerr string dumm

y
Software Trap – allows gtl execution code to throw a fatal error
dialog and terminate the process. If the program is in “Server mode”
will throw an error to the client.

memorydata nil tuple Returns a tuple of the form (“FreeCount”, 1234, “FreeBytes”, . ….)
This is diagnostic information about the operation of the GTL
automatic memory manager and garbage collector.

checkvar Variable name 3-tuple This diagnostic functions returns a 3-tuple containing the name of
the variable as a string, the lv of the variable expressed as a memory
address, and the present R-value contained by the l-value.

 34

Memory Management Operators

byte ref byte byte returns a value of type byte which contains the number of
bytes specified by the argument allocated in garbage collectable
memory which is initialised to zeros.

memcpy (b, s) byte b is of type byte, and s may be of type byte or string. The returned
value is a byte value concatenating the two arguments.

sharedmemory (Id, Size) M Creates an object providing access to a named portion of shared
memory – use ! operator to access bytes therein.

sharedexisting (Id, Size) M Returns a pre-existing shared memory object, or an error string if
there is none such. The Size parameter is a Maximum size. The
length of the returned memory block will be a multiple of 4096
bytes as determined by the creator.

sharedn (M, i, v) dummy Updates an 8 byte section of a shared memory object with the num
value v.

sharedd (M, i, v) dummy Updates an 4 byte section of a shared memory object with the ref
value v.

sharedb (M, i, b) dummy Updates a section of shared memory at offset I with byte data b.

Conversion Operators
b2s byte string Converts a byte or a filemap value to a string value

b2n byte num Converts an b byte value to a num (changes type)

n2b num byte Returns an 8 byte value from the floating point argument.

s2b string byte Converts a string value to a byte value (note - string may contain
binary bytes such as 0 – uses allocated length not nul termination.)

s2r string ref Assuming a string is composed of decimal digits returns the
corresponding integer as a ref RV.

u2r string ref Unsigned string to ref conversion – effective DWORD result.

r2s 2-tuple

or

ref

string Converts an integer – ref RV to a string RV of length n where the
argument tuple is of the form (x, n) where x is the ref value to
convert and n is the desired string length.

Where a single ref argument is given a string of length 0 to n is
returned as required by the number of significant digits of the
argument plus a leading minus sign for negative arguments.

r2sz 2-tuple string Converts an integer – ref RV to a string RV of length n where the
argument tuple is of the form (x, n) where x is the ref value to
convert and n is the desired string length, includes leading zeros in
result.

r2b ref byte Converts a ref value 32-bit, 4-byte byte value.

b2r byte ref Converts the first 4 bytes of a byte to ref

n2r num ref Converts a num RV to a ref RV.

r2n ref num Converts a ref RV to a num RV

: n:(w,d)

n:d

string

The colon operator converts a num, ref or a 64-bit integer to a string,
where w is the desired field width and d is the desired number of
decimal places (typically 0 for integer types). Scientific rounding is
used.

(An alternative form %: is available for outputting ref values as
unsigned 32-bit values)

With a single ref parameter after the colon the result will be a
variable length string with no leading space characters and the
specified number of places after the decimal point.

d2s date string Returns an 8 character string of the form YYYYMMDD e.g.
20010124 for the 24th January 2001.

 35

date2string date string Returns an 8-character string of the form DD/MM/YY

date2string4 date string Returns a 10-character string of the form DD/MM/YYYY

time2string time string Returns an 8-character string of the form HH:MM:SS

s2t string time Converts a string of form HH:MM or HH:MM:SS to the
corresponding time RV.

s2tex string time Converts a string to the corresponding time RV. More sophisticated
text interpretation. Supports either 24 hour or 12 hour time, so an
optional AM or PM can follow any of these date formats:-

- HHMMSS or HH:MM:SS
- HHMM or HH:MM
- HH where MM and SS goes to zero
- MM where the user has obviously mistyped HH (HH goes

current hour)
- User can also type in midnight or noon

This function is more processor intensive than the s2t operator.

s2dex string date Converts a string to the corresponding date RV. More sophisticated
text interpretation. The operator supports the following formats: -

- DDMMYY or DD/MM/YY assumes sensible century.
- DDMMYYYY or DD/MM/YYYY
- DDMM or DD/MM assumes this year.
- DD assumes this year and month.
- MMDD or MM/DD where the user has obviously mistyped

DDMM
- Also, text shortcuts such as today, tomorrow, yesterday

d2r date ref Converts a date value to a ref value – i.e. days since 1/1/1900

s2d string date Converts a string of the form DD/MM/YY or DD/MM/YYYY to the
corresponding date RV

string2date string date Converts a string of the form YYYYMMDD to a date value.

xmlstring2date string date Converts a string of the form YYYY-MM-DD to a date value.

t2r time ref Converts a time value to a ref value in seconds since midnight.

t2etr tuple* byte Converts a tuple into an ETR

etr2t byte or

file

tuple* Converts an ETR into a tuple, errors are reported by returning a
string instead of a tuple.

s2n string num Assuming a string is composed of decimal digits returns the
corresponding double as a num.

f2b filemap byte Creates a byte value the same size as the mapped file, and copies the
contents of the file to the byte value.

tw2x ref ref converts twids to video device coordinates according to video
resolution. (horizontal)

tw2y ref ref converts twids to video device coordinates according to video
resolution. (verticall)

x2tw ref ref converts video device coordinates to twids (horizontal)

y2tw ref ref converts video device coordinates to twids (vertical)

hex ref string 8-bit argument is converted to 2 character hexadecimal string. E.g.
255 gives FF

hex2b string byte Converts a hexadecimal string to a corresponding byte value.

i64 ref/num int64 Coverts a numeric value to a 64-bit signed integer value

i32 int64 ref Converts a 64-bit integer to a 32-bit

u2b * * Converts undef to “”. Returns any other value unchanged.

hex2d string ref Hexadecimal string to binary conversion

 36

gulp * dummy Evaluates and discards * any expression.

encodebase64 string|byte|image|file
map

string Returns an encoded string of printable characters as base 64
representation of the binary input.

decodebase64 string byte Converts a base 64 string back to the original binary form.

splitbase64 string string Inserts CRLF sequence every 74 characters into a base64 string for
convenience of display/print.

shared2string sharedmemory string Assumes a block of shared memory contains null terminated string
data and returns a string value up to the 1st null terminator in the
memory block which is typically a multiple of 4096 bytes in size.

format (Values, Sizes,
Decimals)

string Return a single string spaced and formatted from the data values.
Use with a fixed pitch font, as the Sizes tuple is in terms character
counts.

formatrow (Values, Widths,
Decimals)

row_rv An R-value which when output, paints a horizontal row with the
values formatted to the column widths in twids, num and ref values
are right justified, num value presented with the specified number of
decimal places.

Image Conversion Operators
 Note: the operators of form b2xxx do not perform any conversion of the

data. They just copy the bytes and set the type of the new rvalue
accordingly. Image values are carried as binary images of the external
file format (jpg, gif, png, bmp etc), and thus may be saved directly to
files with appropriate extensions.

b2gif byte or filemap gif Copies the data from the byte type into a gif type, such that if the gif
type is output to a device context it will be rendered as a graphic image.
gif types are created in garbage collectable memory, so that they may be
discarded at any time without penalty.

b2tga byte or filemap tga Copies the data from the byte type into a tga type, such that if the tga
type is output to a device context it will be rendered as a graphic image.
tga types are created in garbage collectable memory, so that they may be
discarded at any time without penalty.

b2tif byte or filemap tif Copies the data from the byte type into a tif type, such that if the tif type
is output to a device context it will be rendered as a graphic image.
tif types are created in garbage collectable memory, so that they may be
discarded at any time without penalty.

b2pic byte or filemap pict Copies the data from the byte type into a pict type, such that if the pict
type is output to a device context it will be rendered as a graphic image.
pict types are created in garbage collectable memory, so that they may
be discarded at any time without penalty.

b2jpg byte or filemap jpeg Copies the data from the byte type into a jpeg type, such that if the jpeg
type is output to a device context it will be rendered as a graphic image.
jpeg types are created in garbage collectable memory, so that they may
be discarded at any time without penalty.

b2png byte or filemap png Copies the data from the byte type into a png type, such that if the png
type is output to a device context it will be rendered as a graphic image.
png types are created in garbage collectable memory, so that they may
be discarded at any time without penalty.

b2wmf byte or filemap wmf Copies the data from the byte type into a wmf type, such that if the wmf
type is output to a device context it will be rendered as a graphic image.
wmf types are created in garbage collectable memory, so that they may
be discarded at any time without penalty.

b2emf byte or filemap emf Copies the data from the byte type into a emf type, such that if the emf
type is output to a device context it will be rendered as a graphic image.
emf types are created in garbage collectable memory, so that they may
be discarded at any time without penalty.

b2pcx byte or filemap pcx Copies the data from the byte type into a pcx type, such that if the pcx
type is output to a device context it will be rendered as a graphic image.
pcx types are created in garbage collectable memory, so that they may
be discarded at any time without penalty.

b2pgm byte or filemap pgm Copies the data from the byte type into a pgm type, such that if the pgm

 37

type is output to a device context it will be rendered as a graphic image.
pgm types are created in garbage collectable memory, so that they may
be discarded at any time without penalty.

b2bmp byte or filemap bmp Copies the data from the byte type into a bmp type, such that if the bmp
type is output to a device context it will be rendered as a graphic image.
bmp types are created in garbage collectable memory, so that they may
be discarded at any time without penalty.

b2eps byte or filemap eps Copies the data from the byte type into a eps type, such that if the eps
type is output to a device context it will be rendered as a graphic image.
eps types are created in garbage collectable memory, so that they may be
discarded at any time without penalty.

bmp2jpg bmp jpg Converts a bmp to jpg.

jpg2bmp jpg bmp Converts a jpg to bmp – returns string on error.

bmp2png bmp png Converts (uncompressed) bmp to png

png2bmp png bmp Converts png to bmp value (compressed)

image2bmp image bmp Converts any image value to a bmp

image2byte image byte Returns a byte type containing the image data for further manipulation.

rotate (Image,D,BPP) bmp Takes any image in as its argument, and returns a bmp, rotated D
degrees, BPP is the bits per pixel desired in the result.

getdimensions image (w, h) Returns a 2-tuple specifying the width and height of the image argument
in twids.

resizeimage (image, w, h) image w & h are the desired width and height in twids. The image is resized
using paintlib algorithms.

maketransparent (image, (r,g,b), T) image For PNG images only, makes pixels of the indicated colour transparent
in the returned image value. T is a ref value in the range 0 to 255 where
0 is fully transparent and 255 is fully opaque. The (r,g,b) is a threshold
and those pixels with all 3 values >= the (r,g,b) argument will have the
alpha channel set to the transparency value.

abscale num or

(num, num)

abscale The value returned, when subsequently output to the VPS will affect the
scaling of image values accordingly. 1.0 is 100%, 0.5 is 50% etc.

If 2 arguments are passed the x and y scaling are separately specified.

scale num or

(num, num)

scale Similar to abscale except when output the value passed is multiplied by
the current scale factor to yield a new relative scale factor, which when
output then affects subsequent image output.

Bitmap Operators

newbitmap (w, h) bmp Creates a new image value of type bmp as a 24-bit bitmap initialised
to all white.

setpixel (b, x, y,
(r,g,b))

dummy Sets a single pixel in the bmp image b to the indicated RGB colour.

select bmp dummy All output drawn to the bitmap until a select 0 is called. In this case
select 0 returns the modified bitmap.

ETR Store Operators
etrput tuple ref etrput writes a tuple as an ETR to the end of the data.etr, and

determines the ETR Id from admin.etr, and appends the ETR Id and the
ETR offset in index.etr. The ETR Id is returned.

etrputback (t, i) dummy Where t is the tuple data to be put back into the store and i is the ETR Id.
The ETR Id must pre-exist, i.e. have been returned by etrput at some
time in the past, and not subsequently deleted.

etrputback will try to write a tuple back to its current offset in
data.etr. There are three (3) possibilities.

 38

The first is that the tuple is smaller than the previous tuple. The tuple is
written back to the original offset, and the leftover space is freed, and
this information about the leftover space is added to free.etr.

The second is that the tuple is the same size as the previous tuple. The
tuple is written back to the original offset, and nothing else needs to be
done.

The third is that the tuple is bigger than the previous tuple. In this case
the tuple is written to the end of data.etr. The offset in index.etr is
updated. The previous position of the tuple is freed, and this information
is added to free.etr.

etrdelete ref dummy etrdelete deletes the tuple from data.etr, removes the ETR Id from
index.etr and the adds this information to free.etr. The ETR Id is then
appended to the end of admin.etr

etrget ref tuple etrget returns a tuple that matches the ETR Id else it returns nil.
If the ETR Id has been deleted etrget returns nil.

openetrstore nil dummy openetrstore opens the ETR Store for reading and writing. This
must be called before any other operator to access the ETR Store. Any
other calls made before this will generate a GTL execution time error. If
there is no pre-existing ETR Store, empty files are created and initialised
and the folder ETRStore is created if necessary.

closeetrstore nil dummy closeetrstore closes the ETR Store. Any calls made (except
openetrstore) after this will generate a GTL execution time error.

etrstoresizes nil (D, I, F, A) Where D, I, F & A are respectively the size in bytes of the files which
comprise the ETR store, viz: data.etr, index.etr, free.etr and admin.etr

etrnext ref ref Returns the Id of the next sequential ETR from index.etr To find all Ids
start from 0 and continue until zero returned.

etrsize ref ref Given an ETR Id returns the size in bytes.

etrfreestats nil tuple Returns a tuple of pairs (s0, n0, s1, n1, . . .) where the sn are the sizes of
free storage blocks, and the nn are the counts of a given size.

etrcompress nil dummy Makes data.etr a contiguous file - eliminating all free storage blocks,
thereby reducing the size of data.etr to a minimum and the size of
free.etr to zero.

BIN Store Operators 64-bit binary store
binput byte ref binput writes byte data to the end of the data.bin, and determines the

BIN Id from admin.bin, and appends the BIN Id and the BIN offset in
index.bin. The BIN Id is returned.

binputback (b, i) dummy Where t is the byte data to be put back into the store and i is the BIN Id.
The BIN Id must pre-exist, i.e. have been returned by binput at some
time in the past, and not subsequently deleted.

binputback will try to write a byte data back to its current offset in
data.bin. There are three (3) possibilities.

The first is that the byte data is smaller than the previous tuple. The byte
data is written back to the original offset, and the leftover space is freed,
and this information about the leftover space is added to free.bin.

The second is that the byte data is the same size as the previous byte
data. The byte data is written back to the original offset, and nothing
else needs to be done.

The third is that the byte data is bigger than the previous byte data. In
this case the byte data is written to the end of data.bin. The offset in
index.bin is updated. The previous position of the byte data is freed,
and this information is added to free.bin.

bindelete ref dummy bindelete deletes the byte data from data.bin, removes the BIN Id

 39

from index.bin and the adds this information to free.bin. The BIN Id is
then appended to the end of admin.bin

binget ref byte binget returns a byte data that matches the BIN Id else it returns a
zero length byte.
If the BIN Id has been deleted binget returns zero length byte.

openbinstore nil

string

dummy openbinstore opens the BIN Store for reading and writing. This
must be called before any other operator to access the BIN Store. Any
other calls made before this will generate a GTL execution time error. If
there is no pre-existing BIN Store, empty files are created and initialised
and the folder BINStore is created if necessary. If a string argument is
supplied it will be used as the path for the BIN Store

closebinstore nil dummy closebinstore closes the BIN Store. Any calls made (except
openbinstore) after this will generate a GTL execution time error.

binstoresizes nil (D, I, F, A, S) Where D, I, F, A, S are respectively the size in bytes of the files which
comprise the BIN store, viz: data.bin, index.bin, free.bin, admin.bin
and sizes.bin

binnext ref ref Returns the Id of the next sequential BIN from index.bin To find all Ids
start from 0 and continue until zero returned.

binsize ref ref Given a BIN Id returns the size in bytes.

binfreestats nil tuple Returns a tuple of pairs (s0, n0, s1, n1, . . .) where the sn are the sizes of
free storage blocks, and the nn are the counts of a given size.

bincompress nil dummy Makes data.bin a contiguous file - eliminating all free storage blocks,
thereby reducing the size of data.bin to a minimum and the size of
free.bin to zero.

The 64-bit binary store feature is available in the 64-bit & 32-bit editions of the GTL system to
cater for potentally very large data-structures stored on the disk. It is generally similar to the
etrstore concept with the notable exception that it does not assume the storage of etr data, although
often etr data will be accomodated by using an expicit t2etr function with calls to binput, and etr2t
with binget.

 40

B* Tree Operators
bopen string btree Where file is the name of the file containing the B* tree. bopen opens

and selects the B* tree for reading and writing. bopen returns a btree.
This must be called before any other operator to access the B* tree. Any
other calls made before this will generate a GTL execution time error. If
there is no pre-existing B* tree, an empty file is created and initialised.

bclose btree dummy Where b is the btree returned by bopen. bclose closes the B* tree. If
a B* Tree is selected, it is first deselected, and then closed. Any calls
made (except bopen) after this will generate a GTL execution time
error.

bselect btree dummy Where b is the btree returned by bopen. bselect selects the B* tree
for reading and writing.

badd (k, d) dummy The first parameter is key string and the second is the data address. The
key is inserted into the B* tree using the standard B* Tree algorithm.
The value zero should not be used as a data address, because zero is used
to represent a deleted key.

bdel (k, d) dummy The first parameter is key string and the second is the data address. The
key is deleted by using a “lazy” deletion algorithm.

bmap (k1, k2, f) dummy The k1 is starting key string and k2 is an ending key string. The third
parameter f is a lambda expression (function), which will be applied to a
two tuple for each key in the database found between the starting key
and the ending key. The lambda expression is passed a 2-tuple argument
each time containing the database key string, and the data address of the
record.

The lambda expression should return a truth value (0 or 1) to indicate
stop or continue where 1 -> continue with the mapping.

bmapb (k1, k2, f) dummy Reverse direction version of bmap

bdiagmap () dummy Creates a file btreediagmap.txt of b-tree diagnostics information.

 41

B64 Tree Operators (B* Trees with full 64-bit capability)

b64open string b64tree Argument is path for B64 Tree file. It will be created empty, if it does
not pre-exist

b64add (b, k, i64) dummy b is the b64tree value, k is the key string and i64 is the 64-bit data.
Duplicate keys are premitted and added chronoligically.

b64fwd (b, k1, k2,
f)

dummy Calls lambda express f (s, a) for each key in the range (k1 to k2). f
should return 0 or 1 to break or continue. s is a key string and a is the
corresponding i64 data.

b64bck (b, k1, k2,
f)

dummy Calls lambda express f (s, a) for each key in the range (k2 to k1). f
should return 0 or 1 to break or continue. s is a key string and a is the
corresponding i64 data.

b64del (b, k, i64) dummy Delete the key k from the b64tree b. If the i64 value is 0 all like keys
will be deleted, but if the i64 value is non-zero a single specific
instance will be deleted.

SFTP – Secrure File Transfer Protocol Support

sftpauthenticate (u,pt,n,p) string (URL, Port. UserName, Password) returns null string on
succesful authetication – else non-blank error string.

sftpdirectory string tuple Argument is path to directory e.g. “/order”. Returns a
tuple of pairs (FileName, Longentry)

sftpget string byte/string Argument is path to file. Returns error string or byte data
is sucessful

sftpput (string, byte) string Writes file to remote folder identified by 1st argument.
Return null string on success.

sftprename (From, To) string Argements areboth paths. “Moves” a fileon remote server,
non-blank string indicates error.

sftpend () “” Release resources. (sandwich with sftpauthenticate)

GTL Functions Associated with LILAC 3 Reporting

DDS string tuple A field is defined by a tuple of information (Field Name, Field Type,

Field Length). The string RV passed to DDS must be a valid Data
Dictionary table name. The DDS function will then return the tuple of
fields that defines the Data Dictionary table name. eg
DDS(“Invoice_Total”)
will return
(“14”, (ITInvoiceNo, 1, 8), (ITCustomer, 2,
12), (ITOrder, 2, 12), ...)

NewRow DDS tuple tuple NewRow returns a tuple which is isomorphic with the kind of tuple
returned by the row operator from the data base. I.e. each element of
the tuple is initialised to the correct type as indicated by the DDS
tuple,
using null strings and zero values as appropriate.

NameAddress string tuple Returns the first row corresponding to the name and address key
passed into the function.

let icar = NameAddress(it _ITCustomer) in
\ where icar = Invoice Company Address Row
\ and it is the Invoice Total record

GetCreditor string tuple Returns the first row corresponding to the creditor key passed into the
function. There is built in support for Creditors in head office. Works
in a similar way to the NameAddress function.

GetDebtor string tuple Returns the first row corresponding to the debtor key passed into the
function. There is built in support for Debtors in head office. Works
in a similar way to the NameAddress function.

 42

JulianDate ref date Returns the Julian Meat Order Date.

Report 3- tuple dummy This function establishes the connection to the Lilac database, reads
the company record, sets the entity, and then reads the company’s
street and mailing address. To use this function you must connect to
through the L32 client, it will not work as a stand-alone function. The
first element in the tuple is the title of the report to be displayed in the
title bar of the window.

The 2nd argument is the approximate total column width of the report
in characters. The Report function will apply a suitable fixed pitch
font to achieve optimal presentation and printability of the resulting
report, based on this argument.

Report("Invoice Replication Report", 96, nil)

The 3rd argument may be a 2-tuple of of tuples, the members of
which are the column titles for the report, with a string per
column, assuming a 2-line column title style. For example:

((“Customer “, “Account “, “ YTD
“),
 (“ Key “, “ Title “, “ Balance
“))

System Operators
command nil string The command line with which the GTL compiler/interpreter was

invoked. (As returned by the GetCommandLine windows API call).
envvar string string Returns a string obtained from the Windows API call

GetEnvironmentVariable. envvar will return the null string if the
argument string is undefined.

setenvvar tuple Dummy Sets the environment variable. First parameter is the environment
variable name, the second parameter is the evironment variable
parameter.

terminate nil nil Terminates the current process and closes the GTL window
immediately.

processid () ref Returns Process Id of current process.

enumprocesses nil n-tuple Returns a tuple of Process Id's for all the processes running on a
system - c.f. Task Manager

processinfo ref tuple Given a process id argument, this operator returns data about the
process. If t is the result, t 0 is a string giving the full path and
filename of the base executable module. Some system processes
return zero length strings.

processtimes ref tuple Given a process id argument, this operator returns a 4-tuple of 64-bit
nano-second values, (Creation Time, Exit Time, Kernel Time, User
Time)

StackDump nil dummy Diagnostic tool.

gettype any string Returns a string containing the type of the RV to which this operator
is applied.

username () 2-tuple For example
(doug, CN=Doug Lennox,CN=Users,DC=lennox,DC=com,DC=au)

ldap 4-tuple tuple Example argument;
"domain.lennox.com.au", "DC=lennox,DC=com,DC=au",
"doug", "vulcan"
That is Domain-Controller, Domain, User, Password.

win64 () 0/1 Returns 1 if the gtl interpreter is a 64-bit build. (g64.exe)

isremotesession () 0/1 Returns 1 if running in a Remote Desktop or Terminal Services
session.

Window Manipulation Operators

 43

vscroll ref (1/0) dummy Removes or displays the vertical scroll bar. By default the scroll bar is
on. 0 removes the scroll bar and 1 displays it
If vertical scrolling is on the up/down arrow keys are interpreted as line
up/down scroll instructions. If vertical scrolling is off the up/down
arrow keys are passed as keyboard input esc[A and esc[B
The mouse wheel is disabled if vscroll is off.

hscroll ref (1/0) dummy Removes or displays the horizontal scroll bar. By default the scroll bar
is on. 0 removes the scroll bar and 1 displays it

scroll () (h, v) Returns the horizontal and vertical scroll offset in twids (2-tuple of
refs).

scrollwindow (x, y) dummy Changes the scrolling of the current window by the signed x & y
values.

scrollevent ref dummy Allows the programmer to specify a value to be returned by
wmcommand() to signal a change in the windows scrolling.

set_title string dummy Sets the window title.

get_title () or ref string The title bar contents are returned – nil arg specifies current window,
ref arg specifies window handle.

click ref (1/0) dummy Enables or disables left mouse button clicking in the window. The
default is left mouse button clicking is enabled. 0 disables left mouse
button clicking, and 1 enables it. If there are fields displayed in the
window, the user will still be able to click in them, even if left mouse
button clicking has been disabled.

setbgcolour 3 tuple dummy Sets the background colour of the window. The tuple is the format (R,
G, B).

setresize 3 tuple dummy Sets the resizing options of the GTL Window. The first parameter
determines if the minimize button is available, the second parameter
determines if the maximize button is available, and the third determines
if the border can be resized. In all cases if the value passed is 0, then
that option is disabled, else it is enabled.
setresize(1, 0, 0)
Sets the window so that it has a minimize button but cannot be
maximized or resized

showsysicon tuple dummy Displays the default windows icon in the task notification area. The 1st
argument is the text to be displayed when the mouse moves over the
icon. The 2nd is the name of the file containing the icon, and the 3rd is
the zero based index of the icon to use.

show SW

or

(H, SW)

dummy Shows or hides the window. The value of the parameter can be: -

SW_HIDE 0
SW_SHOWNORMAL 1
SW_NORMAL 1
SW_SHOWMINIMIZED 2
SW_SHOWMAXIMIZED 3
SW_MAXIMIZE 3
SW_SHOWNOACTIVATE 4
SW_SHOW 5
SW_MINIMIZE 6
SW_SHOWMINNOACTIVE 7
SW_SHOWNA 8
SW_RESTORE 9
SW_SHOWDEFAULT 10
SW_FORCEMINIMIZE 11
SW_MAX 11

The second form allows the show state of another window to be
addressed.

disableclose nil dummy Eliminates the close button at the top right of a window, and from the
system menu.

getwinver nil tuple Returns the major and minor versions, build no, and the value returned
by the GetVersion() API of the Microsoft Windows operating system.

 44

(getwinver()) 0 < 5 is true for WIN9x and 6.2 means Windows 8
wsize 4-tuple dummy wsize(xorg, yorg, xwidth, ywidth), Sets the window size to the parameters

xwidth, ywidth, and moves the initial displaying position to xorg, yorg
Parameters are expressed in twids, and are relative to the top left hand
corner of the windows desktop.

getwsize nil

0

Non-zero

(l, t, r, b) Returns the screen coordinates (in twids) of the upper-left and lower-
right corners of the currently selected output window. (uses
GetWindowRect in WIN32 API). Bottom corner is outside window.
Includes borders, title bar etc.

If 0 is passed as an argument the outer parent’s window size is returned.

If a non-zero value is passed it is the handle of a window whose size is
retrieved.

clienttoscreen (x, y) (X, Y) Returns the absolute screen position in twids of the client coordinates in
twids passed as arguments.

startup () (X, Y, W,
H)

Window position and size passed to the GTL execution in the
STARTUPINFO structure (in twids).

sizechange ref dummy A non-zero argument causes subsequent changes to the window size to
be communicated via the wmcommand() operator. Every time the
window size is changed, three ref values are returned via the
wmcommand buffer: the argument, and the new width & height of the
window in twids.

activate ref dummy A non-zero argument causes the value to be sent via wmcommand()
every time a WM_NCACTIVATE message is processed by the
Windows message loop.

getclientsize nil (w, h) Returns the size in twids of the currently selected output window’s
client area (uses GetClientRect in WIN32 API)

icon string string Changes the icon for the windows class (the main GTL window and any
child windows). The argument is a string giving path and filename for a
.ico file to use. The result is the null string upon success or an error
string upon failure.

child (t, f, x, y,
xw, yw)

or

(t, f, x, y,
xw, yw, f2)

child Creates a child window. Argument t is a string to used in the title bar, f
is a ref value of bit flags affecting the new window, and (x, y) are the
twid coordinates of the top left hand corner of the child window relative
to the client area of the parent (main GTL execution) window. (xw, yw)
are the size of the window. f2 is an optional parameter that allows the
user to specify extended window creation flags.
The child value returned by the child operator may be passed to the
select operator to cause subsequent output to appear in the child
window. Use (select 0) to reset the output to the parent window.
The child window and associated memory usage is garbage collected
once the value is no longer referred to from the GTL variable, and the
window has been closed by the close operator. If a child window has
been closed via the menu, or the X in the top right hand corner, then
calling wmcommand will result in a value of –1.

setwindowflag ref dummy Sets one or more of the bit flags in the Flags member of the oWindow
structure of the main GTL execution window. The operator uses an
XOR operation, so successive calls will toggle a particular flag value or
values.

The first 2 bits are reserved for specifying output layers.

wF_Menu 4 Want menu
wF_KillProcess 8 Kill whole process on

window close
wF_Seconds 16 Create 1 second interval

timer
wF_PageFormat 32 We are processing page

formatting data
wF_NoMargins 64 Deduct non-printable margins

when printing
wF_AutoScroll 128 Always want to see caret so

 45

scroll
wF_Quietly 256 Suppress chimes
wF_Hide 512 Hide window till output

attempted
wF_NoCaret 1024 Hide/Show the Caret
wF_TrayIcon 2048 Show a icon in the system

tray
wF_Child 4096 This is not the parent window
wF_CloseOnLoseFocus 8192 Window closes if it loses the

focus
wF_ChildFocus 16384 Indicates when a child's child

has the focus
wF_CloseFindOnFocus 32768 Close Find/Replace dialog

when it loses the focus
wF_ChildHasTimer 65536 Child window has a timer
wF_DependOnAction

131072 Accept LSAActionExit
message as an instruction to
exit

wF_DontCaptureFocus

262144 Don’t take the focus

wF_ToolWindow 524288 Tool window without top
most setting

wF_NoClose 1048576 Disable the X in the top right
hand corner

wF_IsClosed 2097152 I’m closed, no more output
accepted

wF_FinalExit 4194304 All windows processing -
DestroyWindow is complete

wF_NotifyAllMouseMsg 8388608 Send all mouse click
messages regardless of
capture, but only when not
captured.

wF_HScroll 16777216 Want Horizontal Scroll Bar
wF_VScroll 33554432 Want Vertical Scroll Bar
wF_Rubber 67108864 Rubberband capture mode on
wF_AllKeyStrokes 134217728 Do not interpret keystrokes

for scrolling, pass them to
execution thread

wF_NSSizing 268435456 Want a horizontal sizing line
wF_WESizing 536870912 Want a vertical sizing line
wF_EnableSizing 1073741824 Rectangles with wP_Capture

want sizing cursors
wF_Transparent 2147483648 The TransparentColour

attribute contains valid
information

If toggling wF_Seconds off, then you need to call set_title to set the title
of the window. If toggle wF_Seconds on, there will be a 1 second delay
before the title is updated with the timer.

setwindowflag2 ref dummy Similar to setwindowflag acting on a second 32-bit set of bitflags.

wF2_NoGraticule 1 Suppress graticule lines in
sized rectangles

wF2_InvalidateScroll 2 Full client area invalidate
when scrolling.

wF2_PrintLeftPages 4 Only print left pages - i.e.
when x origin of page is 0,
obsolete

wF2_ToolWindow 8 Toolwindow, menu

wF2_ActiveToMouseIn 16 Send Mouseclicks to mousein
buffer for mouseactive
objects, instead of
wmcommand buffer

wF2_TopMost 32 Topmost

wF2_Link 64 Mark Text as Document
designer link

 46

wF2_MinimiseNotify 128 Causes a -3 value to be sent

via wmcommand() operator
to notify that the window has
been minimised, -5 for a
restore, and -6 for a
maximise.

wF2_NoMouseScroll 256 Don’t scroll when user uses
the mouse wheel

wF2_EMFOutput 512 Display primitives at 600 dpi
wF2_NoPrinterDefault Don't attempt to set printer

defaults.

wF2_ExitIntercept For the outer parent window,
causes -1 to be returned from
wmcommand() instead of
closing the window.

wF2_ClearCode The mouseactive code is only
for clear purposes.

wF2_ParentControl mouseactive wmcommand
codes are passed to the parent
window.

wF2_ChildStyle Create a child window with
WS_CHILD style. Suitable for
laying out child windows which
track the positioning of the parent.
Note a GTL child window is
rather different from a Microsoft
child window normally, but this
flag brings them more into
consistency.

wF2_GlobalRubberBand Left button down presents rubber
band rectangle at all times.
On left button up wmcommand
returns 9 values (-4,
L,T,R,B,X0,Y0, X1,Y1)
The LTRB define a rectangle and
the X0,Y0,X1,Y1 provide
direction for line drawing.

setwindowflag3 ref dummy wF3_LeaveFocus graphic elements are not to take focus when clicked.
wF3_BMPOutput We are drawing in a memory DC bitmap
wF3_VKHomeEnd Transmit Home as esc[H & End as esc[E
wF3_FocusToParent Give the focus to the parent
wF3_ToolWindow Tool Window without Topmost setting
wF3_ExitIntercept Like wF2_ExitIntercept except applies to child
 windows as well.
wF3_Arrows Pass arrow keys as 28, 29, 30, 31 ascii
wF3_MouseDown Return mouseactive code on left mouse down

getwindowflag dummy ref Returns the window flags for the currently selected window.

getwindowflag2 dummy ref Returns the window flags2 for the currently selected window.

sleep ref dummy Suspends GTL execution thread for specified number of mS. For use
with kbtraffic & wmtraffic, sleep 50 is good, to get good response
without excessive CPU utilisation.

openbrowsewindow 2-tuple

or

3-tuple

string Opens a standard Microsoft Windows file browse dialog box, and
allows the user to select one file.

The first argument is a tuple of string pairs. e.g.
("Comma Separated Value Files (*.csv)", "*.csv",

 47

or

4-tuple

 "Text Files (*.txt)", "*.txt")

The second argument is the path.
The file name selected by the user is then returned.
If the operator clicks the cancel button, a null string is returned
e.g.
let fname = openbrowsewindow(("Comma separated value files",
"*.csv"), (envvar "USERPROFILE")."\Desktop") in

The optional 3rd argument may be a default file name.

The optional 4th argument allows extra flags to be passed to the
Microsoft API such as OFN_ALLOWMULTISELECT, but that part of
the API is very buggy.

browseforfolder (Title,
CSIDL,
Flags)

string Opens a Shell Dialog to allow the operator to select a folder. The
selected folder is returned. The 2nd argument allows a root folder to be
specified 0 -> Desktop. The third argument allows for flag settings in
the SHBrowseForFolder API

getsavefilename 3-tuple string, ref Opens a standard “Save As” dialog. Generally similar to
openbrowsewindow, the additional 3rd argument is the filename to
prompt with. If the operator clicks Cancel, a zero length string is
returned. An optional 4th argument permits the specification of a default
extension.
The return values are the file path string and the filter index selected by
the operator.

screensize () 2-tuple Returns the working area of the primary monitor in twids.

monitorsize () 2-tuple Returns the full size of the primary monitor in twids.

virtualmonitor () 2-tuple Returns the combined size of multiple monitors in twids.

sendmessage (Msg, Wp,
Lp)

or

(Hwnd,
Msg, Wp,
Lp)

ref Calls the Windows API SendMessage function with the specified
parameters for the currently selected output and returns the result.

sendmessage does not return until the message has been processed.

The 2nd form permits a control handle to be passed as the 1st argument.

postmessage (Msg, Wp,
Lp)

or

(Hwnd,
Msg, Wp,
Lp)

dummy Calls the Windows API PostMessage function with the specified
parameters for the currently selected output window.

postmessage queues the message and returns immediately,

The 2nd form permits a window handle to be passed as the 1st argument.

findwindow (s1, s2) ref Return a handle to a window by calling the API FindWindow function.
E.g. findwindow("LENNOX", "") will return the handle of a L32
window.

handle ()

child

ref Returns the handle of the currently selected window or a child window.
Useful for passing to a GTL process run separately as a tool window of
some sort e.g. 3DControls, or Numeric Key Pad.

setfocus ref dummy The argument is a window handle and the focus is given to that
window.

focused () ref Returns 1 if the currently selected window presently has the keyboard
focus.

bringwindowtotop () or ref dummy Brings a window to the top of the Z-order, without restore or focus
changes.

setforeground () dummy Brings the window to the top does a show restore and gives it the focus.

setforeground ref dummy Brings the specified window to the top and gives it the focus (no show
restore).
Note setforeground LILACParent is the way to give the focus

 48

to LILAC.exe such that tool tips work.

If ref arg is zero the current window is set foreground without a
SW_RESTORE

getforegroundwindow () ref Returns a ref value which is the handle of the window which has the
focus.

enumwindows () tuple Each member of the tuple contains data about a top level window: (H,
T, P, C). H is the window handle, T is its title bar text, P is the Process
Id and C is the Class Name.

enumchildwindows ref tuple Arg is a window handle, result is ((h0, t0),(h1, t1), . . .) where the h's are
handles, and the t are window title of the child windows of the
argument window.

createcontrol tuple control Creates a child control. Arguments are (extended style, control class,
window title, style, x, y, width, height, id)
Id should be the mouseactive code for the control.
The parent window's current font is set in the control window.

destroycontrol control dummy Destroys a child control.

getrichtext ref string Where the handle has been obtained from a Rich Text Edit control
using the handle operator. The RTF data from the control will be
returned with all the RTF formatting information. You can send RTF to
a Rich Text Edit control with a simple WM_SETTEXT

setrichfont ref dummy Communicates the current font settings to a rich edit control.

getrichfont ref (f, p, w, c) Where f is the Type Face, p is Points, w is zero, and c is (R,G,B)

richposition (h, x, y) p h is handle of a control, x, y are coordinates within the control and p is
the corresponding character position.

getid control ref Gets the id of child control.

getcontrol ref control Gets a handle to a child control from an id. If a child control
corresponding to the id can not be found a ref 0 is returned.

dragacceptfiles ref dummy Turns on accepting files by drag and drop into the currently selected
window. The argument will be returned via wmcommand() when one
or more files are dropped on the window.

dragfiles () tuple May only be called after a wmcommand() returns the ref arg passed to
dragacceptfiles. Returns a tuple of strings being the full paths to the
file(s) dropped on the window.

dragpoint () (x, y) Coordinates in twids of drop position in window. To he called after a
wmcommand() returning ref arg passed to dragacceptfiles

zoom num dummy Default setting is zoom 1.0, values > 1.0 magnify the vps and values <
1.0 shrink the vps presentation.

printzoomed ref dummy Apply the zoom factor in a printer device contact as well as in the vps.

windowrect ref (l,t,r,b) Arg is a window handle - returns the window’s rectangle in screen
twids.

isiconic ref 0/1 True if window is minimised,

flashwindow () dummy Invokes FlashWindow API call

 49

CD Burning Operators
CD burning in GTL is only supported under Windows XP (or later), or computers that have the Nero Burning ROM 5.5
software installed.

cd_burn t

or

(t, s)

or

(t, s, r, pb)

string Burns the cd. t is a tuple of absolute file paths which are to be burnt to
the disc. s is the label of the cd. r is a “boolean” ref which indicates if
the burn process should be simulated. pb is a ref progress bar variable.

Returns “” on success and an error message string on failure.

When cd_burn returns, it releases all resources associated with the cd
burner.

cd_getdrives nil tuple Returns a tuple of all CD Burner drives GTL can use. If nil is returned,
it means no supported CD burner drives were found. For more
information call cd_getlasterror.

cd_getlasterror nil string Returns the last CD error.

shellcd_burn nil string Supported only Windows XP or later.

Runs the shell’s CD Burning Wizard. Any files to be burnt to the cd
must be copied to the staging area. This can be done by either using
shellcd_addfile or by retreiving the staging path (shellcd_getstagepath),
and copying the files there.

Returns “” on success and an error message string on failure.

When shellcd_burn returns, it releases all resources associated with the
cd burner.

shellcd_getstagepath nil string Supported only Windows XP or later.

Returns the staging path on success and “” on failure. For more
information about any errors that occur use shellcd_getlasterror.

shellcd_addfile string string Supported only Windows XP or later.

Copies the file the the staging area. Returns “” on success and an error
message string on failure.

shellcd_getdrives nil tuple Supported only Windows XP or later.

Returns a tuple of all CD Burner drives GTL can use. If nil is returned,
it means no supported CD burner drives were found. For more
information call cd_getlasterror.

Because the shell only supports one CD Burner, the tuple returned with
only ever be of order 0 or 1.

shellcd_getlasterror nil string Returns the last CD error.

 50

DVD Burning Operators
DVD burning in GTL is only supported on computers that have the Nero Burning ROM 6.0 software installed.

dvd_burn t

or

(t, s)

or

(t, s, r, pb)

string Burns the dvd. t is a tuple of absolute file paths which are to be burnt to
the disc. s is the label of the dvd. r is a “boolean” ref which indicates if
the burn process should be simulated. pb is a ref progress bar variable.

Returns “” on success and an error message string on failure.

When dvd_burn returns, it releases all resources associated with the
dvd burner.

dvd_getdrives nil tuple Returns a tuple of all DVD Burner drives GTL can use. If nil is
returned, it means no supported DVD burner drives were found. For
more information call cd_getlasterror.

dvd_getlasterror nil string Returns the last DVD error.

Registry Operators
lsareg (p, k) string or

tuple
The parameters are the product and key. Returns a "" if the key or product
does not exist else it returns the value of the key.
The section of the registry inspected is
HKEY_CURRENT_USER\Software\Lennox Computer\
A tuple is returned when lsareg encounters an ETR stored as
binary value in the registry.

lsaset (p, k, v) dummy The parameters are the product, the key and the value of the key. It places
these values in the registry, creating any needed folders.
As necessary the product is placed under
KEY_CURRENT_USER\Software\Lennox Computer\ in the registry
p & k are strings and v may be a string or a tuple. If v is a tuple it is
converted to an ETR and stored as a binary value in the registry.

hlmreg (p, k) string or
tuple

The parameters are the product and key. Returns a "" if the key or product
does not exist else it returns the value of the key.
The section of the registry inspected is
HKEY_LOCAL_MACHINE\Software\Lennox Computer\
A tuple is returned when lsareg encounters an ETR stored as
binary value in the registry.

hlmset (p, k, v) dummy The parameters are the product, the key and the value of the key. It places
these values in the registry, creating any needed folders.
As necessary the product is placed under
HKEY_LOCAL_MACHINE \Software\Lennox Computer\ in the registry
p & k are strings and v may be a string or a tuple. If v is a tuple it is
converted to an ETR and stored as a binary value in the registry.

regdeletekey (h, s) string Deletes a key from the Windows Registry

regdeletevalue (h, s) string Deletes a value from the Windows Registry

regcreatekey (h, s) ref Creates the specified registry key. If the key already exists, the function
opens it. The first parameter is a ref which is a handle to an open key.
This handle is returned by the regcreatekey or regopenkey, or it can be
one of the following predefined keys:

HKEY_CLASSES_ROOT
HKEY_CURRENT_CONFIG
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

The second parameter is a string containing the name of the subkey to
create. Returns zero if the registry key is not created or opened, else
returns a handle to the key as a ref value.
e.g.
let Software = regcreatekey(HKEY_CURRENT_USER, “Software”) in

regopenkey (h, s, w) ref Opens the specified registry key. The first parameter is a ref which is a
handle to an open key. This handle is returned by the regcreatekey or

 51

regopenkey, or it can be one of the following predefined keys:
HKEY_CLASSES_ROOT
HKEY_CURRENT_CONFIG
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

The second parameter is a string containing the name of the subkey to
open. The third parameter is a ref 1 for write access, 0 for read only
access. Returns zero if the registry key is not found, else returns a handle
to the key as a ref value.
e.g.
let Software = regopenkey(HKEY_CURRENT_USER, “Software”, 0)
in

regclosekey h dummy Close a registry key

regenumvalue (h, i) (Name,
Data)

e.g.
let ND = regenumvalue(h, i) in
unless null ND do
{ let Name, Data = ND in
The 2nd argument should be incremented from 0 to enumerate all the
values of a key. The result is a 2-string tuple, or null if there are no more
values.

regenumkey (h, i) tuple i should be 0 for the 1st key

regsetvalueex (h, k, v) string Returns null string on success.

regsetvalue (h, k, v) string Returns null string on success.

Progress Bar Operators
progressbar tuple dummy Takes a tuple of format (height, width, lv), where height is the desired

height in twids, width is the desired width in twids, and lv is a variable
which will be used to increment the progress bar.

The value of the variable is monitored in a Windows timer message, so
it just needs to change arithmetically in the range 0 to 99 to animate the
progress bar.

Use close to dispense with a progress bar, which will also remove it
from the display.

Zip Operators
zipclose zip Dummy Closes the open zip file

zipadd (zip, f, pb) ref Adds a file specified by string f.. Returns the number of files
successfully added to the archive (always 1). pb is a ref progress bar
variable.
The path passed as f is recording in the zip, UNC paths with \\ are
recorded as folders in the zip.

zipextractall (zip, p) ref Extracts all files in the zip to the path specified by the parameter p.
Returns 1 for success.

zipopen (f, flag) zip Opens an existing zip file with the name passed in by the first
parameter. If flag =0 open an existing file, fails if file doesn’t exist and
flag = 2 -> create a new file, fails if the file does exist. On failure the
return value is a string error message.

Miscellaneous Operators
run (c, d, t)

(c, d, t, S)

string Parameters are the command line, the directory to run the process in,
and the length of time you want to wait in mS before continuing. If the
length of time to wait is negative, then it waits until the process exits

The target process may be an .exe file in which case run uses the
CreateProcess API to invoke it, or it may be a document in which case
run uses ShellExecute.

 52

(c, d, t, S,
X, Y, W,
H)

The optional 4th argument is an SW_SHOW value.

X, Y, W, H are optional position and size settings in twids for the target
process. A GTL program uses the startup operator to retrieve these.

run returns the null string to indicate success and an error string to
indicate failure.

creationflags ref dummy e.g. creationflags IDLE_PRIORITY_CLASS Use this operator prior to
a call to run above to set the Creation Flags for the Windows
CreateProcess API.

lastpid () ref Returns the PID of the process created by the last run or spawn
operator.

runwait (s, W) dummy Runs a subsidiary process – s is the executable concatenated with the
rest of the command line. GTL waits for the subsidiary process to exit
before continuing. W is the SW_SHOW parameter desired in range 0
to 11, use -1 to use the default show. SW_HIDE = 0

runtimeout (s, W, t) dummy Same as runwait, but with a timeout t in mS

runwxy (s, t, x, y) dummy Run a process at a position with a timeout.

gtl (s, W, t) tuple s is the gtl executable concatenated with rest of the command line. W is
the SW_SHOW parameter, and t is a tuple of arguments to be passed
the subsidiary process via a temporary file. The return value is a tuple
obtained from the subsidiary GTL process calling etrreturn via a
temporary file created in the Local App Data folder e.g.
let t = gtl ("Hello.gtl", SW_SHOWNORMAL,()) in

suspend 0/1 dummy Suspends message processing for the current selected window. i.e.
messages are discarded. Useful when a foreground window has the
focus invoked via the gtl operator, and the background window
shouldn’t respond until the gtl invoked process returns.

etrarg PID tuple Used by a subsidiary process to retrieve the argument tuple passed as
the 3rd argument to gtl above. PID is the Process Id of the calling
process which the gtl operator appends as the final white separated
argument to the command line used to invoke the subsidiary process.

etrreturn tuple The tuple is converted to an ETR written to a temporary file in the
Local App Data folder for retrieval by the gtl operator in the calling
GTL process. The subsidiary process then terminates.

runresult (c, d) ref

string

Parameters are the command line, the directory to run the process in.
Returns the exit code. If the process fails to run a string rv is returned.

spawn (s, W, t) dummy Same behaviour as the gtl operator above except no data returned and
calling process runs independently. Operator returns immediately.
lastpid operator returns PID of spawned process.

runaswait (tk, string) dummy Parameters are the token obtained from logon, the executable
concatenated with the rest of the command line. GTL waits for the
subsidiary process to exit before continuing.

runelevated (e, p, d) string Uses shellexecute to invoke executable e with elevated privileges
(Administrator) – Vista & later will prompt for Administrator
password.
p is parameters, d is directory.

For example:
runelevated("gtl.exe", "Associations.gtl", getcurdir())

shellexecute (v, f, p, d,
s)

string v (verb) from (“open”, “print”, “printto”, etc)
f windows document file e.g. Letter.doc
p parameters to be passed – e.g. name of printer
d directory to run in
s ref value for show command. e.g.
SW_HIDE 0
SW_SHOWNORMAL 1
SW_SHOWMINIMIZED 2
SW_SHOWMAXIMIZED 3
SW_SHOWNOACTIVATE 4

 53

SW_SHOW 5
SW_MINIMIZE 6
SW_SHOWMINNOACTIVE 7
SW_SHOWNA 8
SW_RESTORE 9
SW_SHOWDEFAULT 10
SW_FORCEMINIMIZE 11

Returns the null string to indicate success, and an error string to
indicate failure.

shortcut tuple dummy This operator creates a windows shortcut. This operator can take 7 or 9
parameters.

The first argument is a string that specifies the module to execute.

The second argument is a string that specifies the shortcut filename.

The third argument is a string that specifies that contains a description
of the shortcut.

The fourth argument is a string that specifies the initial working path.

The fifth argument is a string that specifies the parameters to pass to
the module to execute.

The sixth argument is a ref that specifies the initial window position.
This can be either 1 (normal), 3 (maximized), or 7 (minimized).

The seventh argument is a ref that specifies if the shortcut should be
created with the default icon, or with a custom icon. Specify FALSE to
use the default icon. If you specify TRUE and the number of arguments
is 7, then the icon used is the zeroth icon in the file specified by the
first argument. If however the number of arguments is 9, then the
eighth and ninth arguments are used to specify the icon.

The eighth argument is a string that specifies the path to the icon file to
be used. This can be an EXE, DLL, or ICO file.

The ninth argument is a ref that specifies the zero based offset of the
icon in the icon file. If the icon offset is less than 0 or greater than the
number of icons in the icon file, then a default windows application
icon is used.

These parameters are ignored if use icon is 0

shortcut ("c:\lilac3\l32.exe", envvar("USERPROFILE").
"\Start Menu\Programs\Lilac 3 Client.lnk", "Lilac 3
Client", "c:\lilac3", "test", 3, 1);

This creates a short cut in the start menu.

createzone string dummy e.g. createzone “\\lilac-server”
Adds an entry to the intranet zone for the local computer.

faxdocument tuple tuple The 1st argument is the recipient’s name. The 2nd argument is the
recipient’s number. The 3rd argument is the sender’s name. The 4th
argument is the sender’s number. The 5th argument is the layout of the
document. TRUE for landscape, FALSE for portrait. It is assumed that
a standard Microsoft fax printer driver is installed on the computer.
This operator only works under Windows 2000 and later.
Returns a tuple in format (ref, string, ref). This first member is FALSE
if winfax.dll is not loaded. In this case the program should terminate
after performing any clean operations. The second member returns any
error string. The third member returns the job id.

faxprinter string dummy Establishes a faxprinter other than the default local faxprinter.

 54

mapisend (s, b, t, A,
Batch)

ref Where s is the subject, b is the body text and t is a tuple of recipients of
the form ((“Doug Lennox”, SMTP:doug@lennox.com.au, 1), (“Ailsa
Lennox”, SMTP:ailsa@lennox.com.au, 2), . . .) and A is a tuple of
attachment full paths.
If Batch is true, no dialog box is displayed.
Return value is 0 for success, or a MAPI error code.

getfaxdocuments nil tuple The return value is a tuple of tuples in format (Job Id, Fax Type,
Document Name, Status, Destination, Destination Fax Number,
Sender, Sender Fax Number, Number of Pages, Schedule).

setfaxdocuments obsolete

enumprinters ref tuple The argument specifies which printer info data structure to use.
Possible values are 2, 4, 5. Returns a tuple of 4-tuples of the form
(printer name, server, attributes, port) for all printers local or remote,
visible on the PC. It will return a string in the event of an error.

printertray ref dummy Specify a printer tray selection e.g. 257 may be Tray1

devicecapabilities (string,
string, ref)

tuple The 1st argument is the printer name, the 2nd argument is the port (e.g.
“LPT1:”), the 3rd argument specifies which capabilities to query.
Returns a tuple. Exactly what is returned differs depending on the
capability specified. Please see the Microsoft Platform Documentation
for more information. It will return a string in the event of an error.

exitin ref dummy Specifies the number of seconds to wait before exiting the GTL
process. Pass exitin –1 as the parameter to specify infinity.

drill tuple dummy

drilldoc tuple dummy Drill down to a LILAC WYSIWYG document. The arguments are:
(Process, Command, Key1, Key2, User, Document, PDFflag)

finished 0/1 dummy finished 1; sets the GTL window such that the close or exit windows
command takes immediate effect without a caution dialog box when
the GTL thread is still running.

createservice (n, d, b, D) string Provides the ability to create entries in the Windows Service database.
Require Administrator privileges. n is the name of the service, d is the
display name, b is the binary path, D is the details annotation.
If the service pre-exists, an error is returned, call createservice with a
null string as the b argument to delete a pre-existing service.

 55

Direct X Operators

GTL uses untransformed and unlit vertices. By using untransformed and unlit vertices, GTL requests that Microsoft®
Direct3D® perform all transformation and lighting operations using its internal algorithms.

You are required to specify vertices in untransformed model coordinates. The system then applies world, view, and
projection transformations to the model coordinates to position them in your scene and determine their final locations
on the screen.
d3_window tuple directx Creates a direct x child window. The format of the tuple passed as the

argument is (xorg, yorg, xwidth, yheight). The window by default is not
displayed. To show the window, output the directx rvalue.

d3_clear tuple dummy Clears the presentation space in the direct x child window. The format
of the tuple passed as the argument is (directx, ref). The 2nd argument
is a d3_makecolour value.

d3_destroy directx dummy Destroys the direct x window, and deal locates the appropriate direct x
data structures.

d3_present directx zip Displays everything that was in the Direct X Backbuffer to the screen.

d3_makecolour tuple ref Returns a 32bit unsigned integer that represents an RGBA colour. The
format of the tuple passed as the argument is (r, g, b, a)

The following operators all take the same arguments. The format of the parameter passed is (directx, ref, tuple of
points).

The directx parameter specifies which Direct X window to use.
The ref parameter specifies the number of objects to be drawn.
The tuple of points is a tuple of (x, y, z, colour) formatted tuples.
d3_point tuple directx prim Returns a Direct X Primitive. This can be outputted to add it to the

Direct X Backbuffer.
d3_line tuple directx prim Returns a Direct X Primitive. This can be outputted to add it to the

Direct X Backbuffer.
d3_triangle (d3, n, t) directx prim Returns a Direct X Primitive. This can be outputted to add it to the

Direct X Backbuffer.
d3_trianglestrip tuple directx prim Returns a Direct X Primitive. This can be outputted to add it to the

Direct X Backbuffer. You can only specify one triangle strip per call.
d3_trianglefan tuple directx prim Returns a Direct X Primitive. This can be outputted to add it to the

Direct X Backbuffer. You can only specify one triangle fan per call.
d3_addindex tuple dummy Adds an index to a Direct X Primitive.

d3_settexture (dp,
string)

dummy Adds a texture to a Direct X Primitive. Arguments are Directx
Primitive to apply the texture. And the string is a path to a BMP file.

The following operators defines lighting properties.
Diffuse

Diffuse color emitted by the light. Ceated by using the d3_makecolour operator.
Specular

Specular color emitted by the light. Ceated by using the d3_makecolour operator.
Ambient

Ambient color emitted by the light. Ceated by using the d3_makecolour operator.
Position

Position of the light in world space. This has no meaning for directional lights and is ignored in that case.
Consists of X, Y, Z components.

Direction
Direction that the light is pointing in world space. This member only has meaning only for directional and
spotlights. This vector need not be normalized, but it should have a nonzero length. Consists of X, Y, Z
components.

Range
Distance beyond which the light has no effect. The maximum allowable value for this member is the square
root of FLT_MAX. This member does not affect directional lights.

Falloff
Decrease in illumination between a spotlight's inner cone (the angle specified by Theta) and the outer edge of

 56

the outer cone (the angle specified by Phi). The effect of falloff on the lighting is subtle. Furthermore, a small
performance penalty is incurred by shaping the falloff curve. For these reasons, most developers set this value
to 1.0.

Attenuation0, Attenuation1, and Attenuation2
Values specifying how the light intensity changes over distance. Attenuation values are ignored for directional
lights. These members represent attenuation constants. Valid values for these members range from 0.0 to
infinity. For non-directional lights, all three attenuation values should not be set to 0.0 at the same time.

Theta
Angle, in radians, of a spotlight's inner cone—that is, the fully illuminated spotlight cone. This value must be
in the range from 0 through the value specified by Phi.

Phi
Angle, in radians, defining the outer edge of the spotlight's outer cone. Points outside this cone are not lit by
the spotlight. This value must be between 0 and pi.

d3_pointlight (d3,

index,
diffuse,
ambient,
specular,
position,
Attenuation,
range)

dummy Creates and enables a point light in a Direct X window.

d3_pointlight(d3, 0,
 d3_makecolour(255, 255, 255, 125),
 d3_makecolour(0, 0, 0, 255),
 d3_makecolour(0, 0, 0, 255),

0.0, 0.0, -10.0, 1.0, 0.0, 0.0, 100.0);

d3_spotlight (d3, index,
diffuse,
ambient,
specular,
position,
attenuation,
range,
direction,
Falloff,
Theta, Phi)

dummy Creates and enables a spot light in a Direct X window.

d3_spotlight(x, 0,
 d3_makecolour(255, 255, 255, 125),
 d3_makecolour(0, 0, 0, 255),
 d3_makecolour(0, 0, 0, 255),

0.0, 0.0, -10.0,
1.0, 0.0, 0.0, 100.0,

 -0.5, -1.0, 1.0,
 1.0, 1, 2);

d3_directionallig
ht

(d3, index,
diffuse,
ambient,
specular,
direction)

dummy Creates and enables a directional light in a Direct X window.

d3_directionallight(x, 0,
 d3_makecolour(255, 255, 255, 125),
 d3_makecolour(0, 0, 0, 255),
 d3_makecolour(0, 0, 0, 255),

-0.5,-1.0, 1.0);

d3_ambientlight (d3, ref) dummy Turns on ambient lighting for a Direct X window. The format of the tuple
is (d3, colour) where colour is created using d3_ makecolour.

d3_enablelight (d3, ref, ref) dummy Enables or disables the light at the given index. The format of the tuple
argument is (d3, index, enabled). If enabled is 0 then the light is switched
off, else it is switched on.

d3_setmaterial (dp, ref, ref,
ref, ref,
ref/num)

dummy Sets the material for a given direct x primitive. The format of the tuple is
(dp, diffuse, ambient, specular, emissive, power) where diffuse, ambient,
specular and emissive are created using the d3_makecolour operator.

d3_deleteallprim
s

d3 dummy Deletes all the primitives in the given direct x window.

d3_deleteprim dp dummy Deletes a single direct x primtive.

d3_translate tuple dummy Translates a Direct X Primitive in the Direct X Window. Format of
argument is (dp, x, y, z)

d3_rotatex tuple dummy Rotates a Direct X Primitive on its X axis. Format of argument is (dp, angle
in radians)

d3_rotatey tuple dummy Rotates a Direct X Primitive on its Y axis. Format of argument is (dp, angle
in radians)

d3_rotatez tuple dummy Rotates a Direct X Primitive on its Z axis. Format of argument is (dp, angle
in radians)

 57

d3_scale tuple dummy Scales a Direct X Primitive in the Direct X Window. Format of argument is
(dp, x, y, z)

 58

Conditional Expression

Syntax

b -> e1 | e2

Description

The expression b is evaluated before either expression e1 or expression e2 is evaluated. The evaluation of b must return
a ref value. If the value of b is not equal to 0, then the e1 is evaluated and the value returned. If the value of b equals 0,
then the e2 is evaluated and its value returned.

Note that either e1 or e2 is evaluated, but never both.

Example 1
\Illustration of basic conditional operator use
let x = 10 in \declare the variable x and initialise to 10
let y = x > 10 -> 1 | -1 in \declare the variable y. If x is greater than 10

\initialise the
\value of y to 1 (one)
\else initialise the value of y to –1
\(negative one)

y > 0 -> y | -y \if y is greater than 0 display the value of y,
\else display the

 \negated value of y

Output to Example 1
1

Example 2
\Illustration of a nested conditional operator
let diff = 4 in
let x = diff = 1 -> 100 |
 diff = 2 -> 900 |
 diff = 3 -> 1600 |
 diff = 4 -> 2300 |
 diff = 5 -> 3000 |
 diff = 6 -> 3700 | 4400 in
x

Output to Example 2
2300

Notes

Conditional operators maybe nested, as illustrated by example 2. Parentheses and indentation should be used to resolve
ambiguity and improve legibility for the programmer.

Of course the GTL conditional expression is derives its syntax & semantics historically from the COND operator in LISP
1.5 and combined with the applicative lambda calculus evaluation facility of GTL provides a very powerful recursive
function evaluation engine for the manipulation of symbolic data and artificial intelligence applications.

 59

let Declaration

Syntax

let n = e0 in e1 \e0 may evaluate to a scalar* or a tuple

let n1, n2, .., nk = e0 in e1 \e0 must evaluate to a tuple of order k

let n p1 = e0 in e1 \ p1 may bind to scalar or a tuple when n is applied

let n(p1, p2..,pk) = e0 in e1 \ p1, p2..,pk must bind to tuple of order k when n is applied

let rec n p1 = e0 in e1 \ p1 may bind to scalar or a tuple when n is applied
let rec n(p1,p2..,pk) = e0 in e1 \ p1, p2..,pk must bind to tuple of order k when n is applied

Description

The let statement provides for the definition of variables, and functions.

Immediately after the let key word there can appear a single variable name, a list of variable names, or a function name
with formal parameter list.

Where n is a single variable name, e0 may evaluate to any value. Where n is a list of variable names of the form n1, n2,
…, nk = e1 then e1 must evaluate to a tuple of size k, where n1, n2, …, nk are the individual variable names.

If n is to a function name, then a single formal parameter may bind to a scalar or a tuple of actual parameters which
provides for a form of polymorphic parameterisation. Where multiple formal parameters are specified then the number of
actual parameters (order of the tuple) must match the number of formal parameters.

If the rec operator is used then this allows n to recursively call itself within e0. If rec is not specified any reference to
name n within e0 are bound outside this let declaration.

The scope of the variable or function n is confined to the expression e1. Expression e1 can be as simple as single
statement or it can be as complex as a thousand-line program.

Example 1

\Simple use of let to define variables.
let x, y = 1, 2 in \Where variables are simultaneously
"x = "; x; \defined like this, the expressions
" y = "; y \to the right of the = sign are all
 \evaluated before the variables are defined.
Output to Example 1
x = 1 y = 2

Example 2

\Simple example of using the let operator to
let f1 x = \define a function which requires a parameter x
{ x * 3
} in
f1 3

Output to Example 2
9

Example 3

\self referential function definition

let rec Factorial n = (n = 0) -> 1 | n * Factorial(n-1) in
Factorial 6

Output of Example 3
720

(* In GTL, a “scalar” is any value which is not a tuple.)

 60

Where Expression

Syntax
 e1 where n = e0

e1 where n1, n2, .., nk = e0

e1 where n p1 = e0

e1 where n(p1, p2, .. pk) = e0

e1 where rec n p1 = e0
e1 where rec n(p1, p2, .. pk) = e0

Description

The where statement provides for post definition of variables, and functions.

Immediately after the where a single variable name, a list of variable names, or a function name with formal parameter
list may appear.

Where n is a single variable name, e0 may evaluate to any value. Where n is a list of variable names of the form n1, n2,
…, nk = e1 then e1 must evaluate to a tuple of size k, where
n1, n2, …, nk are the individual variable names.

If n is to a function name, then the syntax must be n(p1, p2, …, pk) = e0 where
p1, p2, … pk are the parameter names, n is the function name, and e0 is an expression. If the rec operator is used then
this allows n to recursively call itself within e0.

The scope of the variable or function n is confined to the expression e1. Expression e1 can be as simple as single
statement or it can be as complex as a thousand-line program.

Example 1
\Simple where statement
x \use x
where x = 1 \now define x

Output to Example 1
1

Example 2
\Simple where statement
let y = 3 in \define y and initialise its value to 3
f1(y) \call procedure f1 with parameter y
where f1(x) = \define procedure f1 with a single parameter
{ x*x
}

Output to Example 2
9

Notes

Practical experience suggests programmers are generally more comfortable with let declarations and rarely deploy the where form.

The source management of large programs is easier when the programmer is assured that identifiers are declared before they are used
i.e. earlier in the source file.

 61

Lambda Expression

Syntax

fn V1 . E

Description

A lambda expression denotes a function. TheV1 component is called the bound variable-part. The variables named in
V1 are called the bound variables of the lambda expression. Bound variables are those, which are to be substituted for
in the expression E. when the lambda expression is applied to actual arguments.

Any variables referred to in E which are not defined in V1 are called free variables.

The handling of the evaluation of free variables by the language interpreter is the most important aspect of the entire
design of the GTL programming language.

The concepts involved are difficult for programmers who lack a strong theoretical background in the Theory of
Computation.

The concept revolves around a “function object” - for example in the “C” language when a function name is passed as an
argument to another function without actually calling the function. In “C”, any free variables in such a function will bind
only to outer level global variables so there is no conceptual difficulty. In GTL, any free variables in a lambda expression
must bind to the environment in which the lambda value is created. This means that the “function object” created by the
evaluation of a lambda expression (note: evaluation does not mean application to actual parameter values) must carry a
combination of the original lambda expression and an environment, which provides the values for any free variables in
the lambda expression.

Example 1
(fn b . (fn a. a + b) 2) 37

Output to Example 1
39

Example 2
let b = 37 in
(fn b . (fn a. a + b) 2 + (fn g . (fn (x, y) . (x + 1) * y) (g, b)) b - (fn c.
b * c + 2) b) b

Output to Example 2
74

Notes

In example 2, note that b in the lambda expression is bound by that example, and the fact that it already had a value is
irrelevant.

 62

Within definitions

Syntax

let d1 = e0 within d2

Description
The declaration d1 = e0 is “private” to the declaration d2 .

Most importantly variables declared in d1 persist as long as a (lambda expression) declared in d2, but are
private to that lambda expression, and make no “holes” in the scope of globally defined variables using the
same identifier.

This concept is the true lambda calculus implementation of “object oriented” programming. Variables bound
“privately” to a lambda expression in this fashion provide a logically consistent and complete version of the
rubbery “object oriented” concept, and the power and efficiency of the GTL interpreter and memory allocation
engine make the concept work in the real world with lightning fast execution.

Example 1
\The 1st declaration of n is global, the 2nd is “private” to the lambda expression Next.
{ let n = 10 in
 { let n = 2 within Next() = valof
 { n += 1; res n
 } in
 for i = 0 to 9 in
 { "Next() = "; Next(); ", n = "; n; NL
 }
 }
}
Output to Example 1

Next() = 3, n = 10
Next() = 4, n = 10
Next() = 5, n = 10
Next() = 6, n = 10
Next() = 7, n = 10
Next() = 8, n = 10
Next() = 9, n = 10
Next() = 10, n = 10
Next() = 11, n = 10
Next() = 12, n = 10

The and keyword is available to allow within variables to be privately associated with a group of lambda expressions
declared simultaneously.

 63

Valof and Res Commands

Syntax

valof C
res E

Description

The effect of obeying an expression such as res E is that the evaluation of the smallest enclosing valof is terminated,
and the value of E is used as the value of the entire valof. Nesting of valof blocks inside one another is permitted. C is a
sequence of commands.

Example 1

\a simple valof and res example.
let Abs x = valof \define a function that returns absolute value of x
{ if x > 0 do res x; \if x is greater than 0 return x
 res -x \else return negated x
} in
let i = -2 in
Abs I (note: lower case abs is a built in GTL operator)

Output to Example 1
2

Example 2
\a complex valof and res expression
let StateCode(x) = valof
{ let id = x = "QLD" -> 0 | x = "NSW" -> 1 |
 x = "VIC" -> 2 | x = "NT" -> 3 |
 x = "SA" -> 4 | x = "TAS" -> 5 |
 x = "WA" -> 6 | x = "ACT" -> 7 | i

where i = valof
{ if (x = "OVERSEAS") do res 8 else res 9

 }
 in
 res id
} in
let S1, S2 = "QLD", "UNKNOWN" in
StateCode(S1);
StateCode(S2)

Output to Example 2
09

Notes

The commands valof and res are intended to be used in conjunction with each another. If they are not however, and
res is called without a corresponding valof, a res value is returned. If valof is called without a corresponding res
command, then valof returns a dummy value.

reslv E

An alternative form of the res operator which will return the lvalue of the expression, so that it may be modified by the
caller.

 64

If Command

Syntax

if B do C1
if B do C1 else C2

Description

The expression B is evaluated before either, command C1 or command C2 is executed. The evaluation of B must return a
ref value. If the value of B is not equal to 0, then the result of the evaluation of C1 is returned. If the value of B equals 0,
then the result of the evaluation of C2 is returned.

Example 1
let x = 1 in \declare a variable x and initialise it to 1
if x do x + 1 \if x does not equal 0 then add 1 to x
else x – 1 \else subtract 1 from x

Output to Example 1
2

Example 2

\Use an if statement to find the absolute value of x

let x = -1 in \declare a variable x and initialise it to -1
if (x < 0) do x := -x; \if x is less than 0 then negate x
x

Output to Example 2
1

Unless Command

Syntax
 unless B do C1

Description

The expression B is evaluated before command C1 is executed. The evaluation of B must return a ref value. If the value
of B is equal to 0, then the result of the evaluation of C1 is returned.

Example 1
let s = "ab" in
unless length s <> 2 do s

Output to Example 1
ab

 65

While Statement

Syntax

while b do C1

Description

The expression b is evaluated before the command C1 is performed. The evaluation of b must return a ref value. While
the value of b is not equal to 0, C1 is repeatedly evaluated. The value of a while statement is always dummy, ie the
same value returned by an assignment statement. The value of C1 is output to the default output context, every-time it is
evaluated.

Example 1
\demonstration of a simple while statement
let i = 10 in \declare a variable i and initialise it to be 10
while (i > 0) do \while i is greater than 0
{ i; " "; \print out the value of i
 i := i – 1 \decrement the value of i
}

Output to Example 1
10 9 8 7 6 5 4 3 2 1

Example 2
\demonstration of a simple while statement
while (i > 0) do \while i is greater than 0
{ if (i - x) do \if i – x doesn’t equal 0
 { i := (i / x) + 1 \calculate the value of i
 };
 x := i - x; \update the value of x
 "(";x;",";i;")" \print out the value of x and i
}
where i, x = 10, 2

Output to Example 2
(4,6)(-2,2)(2,0)

 66

Assignment Statement

Syntax

E1 := E2

Description

E1 is evaluated to yield an L-value and E2 is evaluated to yield an R-value before any assignment is done.

The mapping from the L-value to its previous R-value is changed by the execution of an assignment statement, such that
the L-value subsequently contains the new R-value.

The return value of an assignment statement is always dummy. I.e. it is only useful for the “side-effect” of it evaluation.

The discarded R-value will be automatically detstroyed by the GTL garbage-collector which runs behind the scenes. The
memory occupied by the discarded R-value will be recycled for re-use.

Note: R-values are not “shared” only the L-values are shared between variables declarations an/or tuple elements – so
the discarded R-value from an assignment statement will always be garbage-collected. (although if the discarded R-
value is a tuple, some of the tuples elements may not be garbage collected if they are shared with other variables or
tuples).

Example 1
\demonstration of a simple while statement
let i = 10 in \declare a variable i and initialise it to be 10
while (i > 0) do \while i is greater than 0
{ i; " "; \print out the value of i
 i := i – 1 \decrement the value of i
}

Output to Example 1
10 9 8 7 6 5 4 3 2 1

Example 2
let i, x, y = 0, 1, 1 in
i, x, y := x, y, i;
i; x; y

Output to Example 2
110

 67

Addition Assignment Statement

Syntax

E1 += E2

Description

E1 is evaluated to yield an L-value and E2 is evaluated to yield an R-value before any assignment is done.

The mapping from the L-value to its previous R-value is changed by the execution of an assignment statement, such that
the L-value subsequently contains the new R-value.

The return value of an assignment statement is always dummy. I.E. it is only useful for the “side-effect” of it evaluation.

The discarded R-value will be automatically detstroyed by the GTL garbage-collector which runs behind the scenes. The
memory occupied by the discarded R-value will be recycled for re-use.

Note: R-values are not “shared” only the L-values are shared between variables declarations an/or tuple elements – so
the discarded R-value from an assignment statement will always be garbage-collected. (although if the discarded R-
value is a tuple, some of the tuples elements may not be garbage collected if they are shared with other variables or
tuples).

Example 1
\demonstration of a simple while statement
let i = 0 in \declare a variable i and initialise it to be 0
while (i < 10) do \while i is less than 10
{ i; " "; \print out the value of i
 i += 1 \increment the value of i
}

Output to Example 1
0 1 2 3 4 5 6 7 8 9

 68

Comma Operator

Syntax

T,E

Description

The comma is an infixed, non-associative tuple maker. It is the comma that makes the tuple, not any bracketing, unless
GTL’s grammatical rules would otherwise indicate an alternative grouping.

Example 1
1,2,3; \a tuple of order 3, each element is a REF
(1,2),3; \a tuple of order 2, the first element is itself a tuple of order 2
1,(2,3) \a tuple of order 2, the 2nd element is itself a tuple of order 2

Output to Example 1
(1, 2, 3)((1, 2), 3)(1, (2, 3))

Notes:
The , operator is often used in multiple declarations and multiple assignments. E.g:

Let x, y, z = 1, 2, 3 in . . .

UserName, Password, ExpiryDate := “GEORGE”, “QUERTY”, today();

In the assignment statement example the left hand side is evaluated to create a tuple of L-values, and the right hand side
expression is evaluated to create a tuple of R-values.

 69

Aug Operator

Syntax

T1 aug E

Description

aug is a tuple making operator, whose left operand must be a tuple T1 of order N and whose right operand maybe any
expression E. The resultant tuple is of order N+1.

Example 1
let t = (1, 2, 3) in
let e = “test” in
t aug e

Output to Example 1
(1, 2, 3, test)

Example 2
let t = (1,2,3) in
let e = (1,2) in
t aug e

Output to Example 2
(1,2,3,(1,2))

Note that the implementation of the aug operator in GTL is philosophically flawed, in comparison with the original PAL
language concept. The following example:

let t = (1, 2) in
let s = t aug 3 in
t

will produce output (1, 2, 3)

because the GTL interpreter implements aug by modifying the original tuple R-value, not by copying it an then
augmenting it.

It is advisable therefore, to restrict the usage of aug to the same r-value for example always use it in expressions of the
form:

t := t aug x

This compromise has been made because tuples are often large in typical GTL applications and the performance penalty
of copying the whole tuple every time an aug is executed would be unacceptable.

An alternative operator has been implemented using au as the token which is the “pure” version, in that it makes a copy
of the original tuple argument. The l-values from the original tuple will be still be shared by the new tuple.

 70

Logical Or Operator

Syntax

b1 or b2

Description

The Boolean expression b1 is evaluated first. If value of b1 is zero b2 is evaluated and it’s value returned. If b1 is non-
zero, it’s value is returned, and b2 is never evaluated.

Example 1
let t = () in
if (null t or t 1 = "a") do \if t 1 = “a” was evaluated in this instance an

\error would occur
 \but it is not evaluated because null t is true
t := t aug 1;
t

Output to Example 1
(1)

Bit-wise Or Operator

Syntax
 e1 || e2

Description

Both expressions are evaluated and there values are or-ed together as bit-patterns and the result returned as the value
of the sub-expression. Note this convention is back to front from C Language usage where the single | operator is the bit-
wise operator, and || is the logical operator.

 71

Logical And Operator

Syntax

b1 & b2

Description

The Boolean expression b1 is evaluated first. If the value of b1 is non-zero b2 is evaluated and it’s value yielded as the
value of the sub-expression. If the value b1 is zero, zero is yielded, as the value of this sub-expression and b2 is never
evaluated.

Example 1
let t = () in
t := t aug "a";
if (not(null t) & (t 0 = "a")) do

t := t aug 1;
t

Output to Example 1
(a, 1)

Bit-wise And Operator

Syntax
 e1 && e2

Description

Both expressions are evaluated and there values are and-ed together as bit-patterns and the result returned as the value
of the sub-expression. Note this convention is back to front from C Language usage where the single & operator is the
bit-wise operator, and && is the logical operator,

 72

Not Expression

Syntax

not e1

~ e1

Description

This is not a bit wise operator. If the value of e1 is zero the value of not is 1. If the value of e1 is non-zero, the value of
not is zero.

Example 1
not 1

Output to Example 1
0

Example 2
not 2

Output to Example 2
0

~~ Expression

The double tilde operator implements a bit wise ones complement operator. e.g. ~~ 0 yields –1, and ~~ 1 yields -2 that is
to say 31 binary ones and a low order binary 0.

 73

Addition Expression

Syntax
 E1 + E2

Description

This is the arithmetic addition operator. The result is the sum of the value of expression E1 and the value of expression
E2. A ref value and a num value can be added together and the result is a num value. Where E1 and E2 are two
conforming vectors (tuples), vector addition is performed. If one is scalar and one a vector scalar addition is performed.

Example 1
1 + 2

Output to Example 1
3

Example 2
1 + 2.1

Output to Example 2
3.100000

Minus Expression

Syntax

r1 – r2
 - r2

Description

This is the arithmetic subtraction operator. The result is the subtraction of expression E2 from expression E1. A ref value
and a num value can be subtracted and the result is a num value. . Where E1 and E2 are two conforming vectors
(tuples), vector subtraction is performed. If one is scalar and one a vector scalar subtraction is performed.

Example 1
2.3 - 1

Output to Example 1
1.300000

Example 2
-(-1)

Output to Example 2
1

 74

Division Expression

Syntax

r1 / r2

Description

This is the arithmetic division operator. The result is the division of the value of expression E1 by the value of expression
E2. A ref value divided by a ref value will yield a ref result with the remainder discarded. Mixed ref and a num values will
yield a num result.

Division by zero or a very small number will cause a GTL Execution Time Error.

It is wise to test the value of the divisor unless the programmer is certain that it can never be zero.

The sig operator is available e.g. sig(6, y) is true if y is significant to six decimal places.

Example 1
1/2

Output to Example 1
0

Example 2
1/2.0

Output to Example 2
0.500000

Remainder Expression

Syntax

r1 rem r2

Description

This is the arithmetic remainder operator. Both value must be if type ref. The value of the expression is the remainder
after division of r1 by r2.

Example 1
3 rem 2

Output to Example 1
1

 75

Multiplication Expression

Syntax

r1 * r2

Description

This is the arithmetic multiplication operator. The result is the product of the values yielded by expression E1 and
expression E2. A ref value times a ref value yields a ref result. A num times a ref or ref times a num yields a num result.

Example 1
2 * 3

Output to Example 1
6

Dot Product Operator
{ let a = 1, 2, 3 in
 let b = 3. 4. 5
 a · b
}
Will output the scalar dot product of two vectors: 26

Cross Product Operator
{ let a = 1, 2, 3 in
 let b = 3. 4. 5
 a × b
}
Will output the cross product of two vectors: (-2, 4, -2)

Power Operator
Syntax

r1**r2
Description
The power operator calculates r1 raised to the power of r2.

If r2 < 0 the return value will be 1.0.

If r1 < > 0 and r2 = 0.0 the return value will be 1, and if r1 = 0.0 and r2 = 0.0 the return value will be 1.0.

The arguments may be mixed ref or num. The result is always num.

Example 1
2**3 will output 8.000000

Example 2
4**(1.0/2.0) will output 2.000000

(note there is no sqrt operator in GTL so the x**0.5 is a good trick).

 76

Concatenation Operator

Syntax

s1 . s2

Description

The concatenation operator appends s2 to s1 and returns the result as a new string.

This is certainly the most frequently exploited operator by GTL programmers. The management of string values in
automatically garbage collected memory is an immensely powerful concept compared to most - more primative
programming environments.

To labour the point you can throw a string away in GTL whether it is 10 bytes or 10 million bytes long with absolutely no
penalty in terms of memory leakage or execution delay.

Example 1
let s = "this is a " in
let s2 = "test!" in
s. s2

Output to Example 1
this is a test!

Example 2
let s = "this is a " in
let s2 = "test!" in
let NL = “
” in
s. s2; NL;
s

Output to Example 2
this is a test!
this is a

Sub-string Operator

Syntax s1!(e1, e2)

The exclamation mark operator is an infix operators which returns a sub-string of its first argument, determined by the e1
and e2 arguments. e1 is the starting offset for the sub-string, and e2 is the length of the sub-string. e1 must be less than
the length of the s1 string, but e2 can be any value.

Expression of the form Postcode!(0, 10) are a convenient and efficient way of guaranteeing a fixed string
length when required.

Example 1
“The quick brown fox”!(4, 5)
Output from Example 1

quick

Example 2
(“Fred Smith”!(0, 16)). “x”
Output from Example 1

Fred Smith x

 77

Relational Operators

Syntax

e1 < e2
e1 > e2
e1 <= e2
e1 => e2
e1 = e2
e1 <> e2

Description

Expressions e1 and e2 must be of the same type, and must be either a ref, num, string or tuple value.

The relational equality operators compare e1 to e2 to test the validity of the specified relationship. The result of a
relational expression is not 0 if the tested relationship is true and 0 if it is false. The value returned is always a ref
value.

When tuples are compared they are compared element by element and recursively for sub-tuples.

Example 1
1 < 0

Output to Example 1
0

Example 2
“test” < “tes”

Output to Example 2
0

Alternative versions of the form %< %<= %> %>= are available to provide unsigned 32-bit ref comparisons for
comparing 32-bit values generally employed as memory or disk addresses.

 78

Bracket Operators

Syntax

(e1)
[e1]
{e1}

Description

You can enclose e1 in parentheses without changing the type or value of the enclosed expression.
In GTL all bracketing is considered to be the same. There is no distinction between {, [, and (. It is however conventional
to use {} to define scope, and () for evaluation of expression e1, with [] rarely used.

Example 1
let sqrt x = valof \define the function
{ res x**1/2 \correct answer for wrong reason
} in
sqrt 4

Output to Example 1
2.000000

Example 2
let sqrt x = valof \define the function
{ res x**(1/2) \in this line 1/2 evaluates to 0
} in
sqrt 4

Output to Example 2
1.000000

Example 3
let sqrt x = valof \define the function
{ res x**(1.0/2.0) \correct!
} in
sqrt 4

Output to Example 2
2.000000

Example 1 is wrong because x is raised to power of one and then divided by 2.

Example 2 is wrong even though the brackets are right because integer 1 divide by integer 2 gives
0.

Example 3 is correct as (1.0/2.0) evaluates to 0.5

 79

For Operator

Syntax

for d to e1 by e2 in e3
for d to e1 in e3

Description

Definition d can be a single scalar variable, a list of scalar variables, or a function/procedure.

If d is to define a single scalar variable, d must be have the syntax n1 = e0 where n1 will then be initialised to the value of
e0. n1 must be either a num, or ref value. Expressions e1 must evaluate to ref or num values. n1, e1, e2 must all be the
same type. e1 and e2 are evaluated only once, and this is before e3 is ever evaluated. If the by statement is missing e2
is assumed to be 1.

Note that while for is generally similar to let in that it is a (re-)declaration of the variable, there is an important difference
in that an implied “unshare” operator is invoked such that a new l-value is always created.

The extent of the definition d is confined to the expression e3.

Example 1
let NL = "
" in
for i = 9 to 0 by -1 in
{ i;
 for i = 0 to 9 in
 i;
 NL
}

Output to Example 1
90123456879
80123456789
70123456789
60123456789
50123456789
40123456789
30123456789
20123456789
10123456789
00123456789

 80

foreach Operator

Syntax

foreach d of e1 in e3

Description

Definition d can be a single scalar variable, or a list of scalar variables.

e1 is a tuple of conforming elements. If d is a single scalar variable then members of e1 can be any values, scalars or
tuples. If d is a list of variable names, then the members of e1 must consist of tuples all of the same order as d.

The extent of the definition d is confined to the expression e3.

Expression e3 is evaluated once for each member of e1, with the variables defined in d bound to the members of e1.

Inside the evaluation of e3 a “hidden” pre-defined local variable with identifier _i is available which starts with a value
of 0 and increments to n-1 for each of the elements of e1.

The foreach operator causes an output event for each iteration i.e. it is imperative in form.

forall Operator

Syntax

forall d of e1 in e3

Description

Generally similar to the foreach operator except forall is applicative in context. It returns a tuple where each
element is the result of one evaluation of e3

str Operator

Syntax

str d of e1 in e3

Description

Definition d can be a single scalar variable, or a list of scalar variables.

e1 is a tuple of conforming elements. If d is a single scalar variable then members of e1 can be any values, scalars or
tuples. If d is a list of variable names, then the members of e1 must consist of tuples all of the same order as d.

The extent of the definition d is confined to the expression e3.

Expression e3 is evaluated once for each member of e1, with the variables defined in d bound to the members of e1.

Inside the evaluation of e3 a “hidden” pre-defined local variable with identifier _i is available which starts with a value
of 0 and increments to n-1 for each of the elements of e1.

The str operator is intended for an expression context. It expects each iteration to yield a string value and returns a
concatenated string with all iterations combined.

 81

Unshare Operator

Syntax

$e1

Description

The unshare operator returns a unique l-value. This operator is only meaningful in a context where an L-value is
expected e.g. in a declaration, or in the creation of a tuple.

The unshare concept is very important – a full understanding of the implications of sharing is crucially important to the
successful GTL programmer.

Example 1
\program using unshare operator
let NL = “
” in
let x = 1 in
let y = $x in
x; y;
x := 2;
x; y;
y := 3;
x; y

Output to Example 1
11
21
23

Example 2
\program not using unshare operator
let NL = “
” in
let x = 1 in
let y = x in
x; y;
x := 2;
x; y;
y := 3;
x; y

Output to Example 2
11
22
33

Sharing in GTL needs to be well understood by the programmer. Especially in relation to the use of tuples.
For example:

let a, b = "Michael", "Doug" in
let Names = (a, b) in
b := "George";
Names; NL

Will output

(Michael, George)

 82

Nil Operator

Syntax

nil

Description

Returns a tuple of order zero.

Example 1
nil

Output to Example 1
()

Quote Operators

Syntax

"str"

Description

Double quote characters are used to delimit a literal string. The quotes can appear over several lines. The value created
is stored in managed memory and may be discarded at any time without leakage issues. There are several operators in
GTL available to manipulate strings. The period (dot) character is the concatenation operator , the ! operator is the sub-
string operator, stem, stern, last, front are available to pick strings apart, and applying a string to a ref value returns a
particular character at a 0 based offset from the start of the string.

String handling in GTL is extremely powerful and provides excellent ability to create and manage all sorts of textual data
including ASCII, HTML, XML, EDI etc, etc.

Example 1
"This
is
a
test"

Output to Example 1
This
is
a
test

 83

switch Operator

Syntax

switch (e1, e2, t)

Description

This is an applicative switch concept generally like the “C” switch operator.

All three expressions are evaluated to yield a 3-tuple.

The value of e1 must be a ref integer in the range 0 to n-1 where n is the order of the tuple which is the value of t above.
t must evaluate to a tuple of values which are applicable to the value of e2. i.e. if t is a tuple of lambda expressions the
number of bound variables must agree with the order of the value of e2. If t is a tuple of strings or tuples, then e2 must
be a ref integer.

Example 1
switch (3,

(“Arg1”, “Arg2”, Arg3”),
 (fn(x, y, z)(“Case 0 “.x.”,”.y.”,”.z))),
 (fn(x, y, z)(“Case 1 “.x.”,”.y.”,”.z))),
 (fn(x, y, z)(“Case 2 “.x.”,”.y.”,”.z))),
 (fn(x, y, z)(“Case 3 “.x.”,”.y.”,”.z))),
 (fn(x, y, z)(“Case 4 “.x.”,”.y.”,”.z))),
 (fn(x, y, z)(“Case 5 “.x.”,”.y.”,”.z)))
)
)

Output to Example 1
case 3 Arg1, Arg2, Arg3

 84

has & same Operators

syntax

T has e

e1 same e2

These operators relate to the fundamental ontological basis for variables and values in the GTL Language.

name r-value

l-value

A variable name is bound to an l-value which may be thought of as a container for an r-value. R-values consist of scalar
elements such as ref integers, num floating point values, strings and non-scalars such as tuples and objects.

The terms l-value and r-value derive from their roles on the lhs and the rhs of an assigment operator :=

The assignment operator changes the connection betweenan l-value and an r-value.

The connection between a variable name and an l-value never changes, though a sinlge l-value may be connected to
more than one name.

Tuples are ordered sets of anonymous l-values each of which may be conncted to one or more vraiable names.

let Siblings = (“Mary”, “George”, “Sally”) in
let Sisters = (Siblings 0, Siblings 2) in
let Brother = Siblings 1 in

So the l-value containing the r-value “George” only exists once but has two connections to it. Brother & Siblings 1

The has operator tells you if an l–value is present in a tuple so

Siblings has Brother evaluates to 2

Sisters has Brother evaluates to 0

The same operator tells you if two l-values are identical

Brother same (Siblings 1) evaluates to 1

Brother same (Sisters 1) evaluates to 0

Note the value returned by the has operator is the offeset in the tuple (1 to n) or 0 if the l-value is not found.

The same operator returns 0 ro 1.

Note: the lv operator is available as a diagostic aid about sharing. It returns a ref value unquely identifying the l-value.

 85

GTL Syntax

GTL Non-terminal Symbols

Label Type
P Program
E Expression
E1 where expression
E2 valof expression
C command
C1 labelled command
C2 conditional command
C3 basic command
T tuple
T1 non null tuple
T2 conditional expression
B boolean
B1 conjuction
B2 negation
B3 relation
A arithmetic expression
A1 multiplication / division expression
A2 factor expression
A3 primary expression
OP operation
R combination
R1 rand
D definition
D1 simultaneous definition
D2 rec definition
D3 basic definition
V bv part
V1 basic bv
NL NAME list
RL relational functor
NAME variable identifier

 86

GTL Syntax

This is the GTL syntax in Bacchus Naur form

P: E

;

E: _let D _in E
 | _fn V1 _dot E
 | E1

;

E1: E2 _where D2
 | E2
 ;

E2: _valof C
 | C
 ;

C: C1 _semicolon C
 | C1

;

C1: _if B _do C1 _else C1
 | _if B _do C1
 | _for D _to E _by E _in C1
 | _for D _to E _in C1
 | _unless B _do C1
 | _while B _do C1
 | C3
 ;

C3: T _assign T
 | T _plusequal T
 | _res T
 | _checkvar T
 | T
 ;

T: T1
 | T _comma T1
 ;

T1: T1 _aug T2
 | T2

;

T2: B _cond T2 _bar T2
 | B

;

B: B _logor B1
 | B _bitor B1
 | B1
 ;

B1: B1 _logand B2
 | B1 _bitand B2
 | B2

;

B2: _not B3
 | _bitnot B3
 | B3
 ;

B3: A RL A
 | A

;

 87

A: A _plus A1
 | A _dot A1
 | A _colon A1
 | A _exclamation A1
 | A _minus A1
 | _minus A1
 | A1
 ;

A1: A1 _times A2
 | A1 _divide A2
 | A1 _rem A2
 | A1 _lshift A2
 | A1 _rshift A2
 | A2

;

A2: A3 _power A2
 | A3
 ;

A3: OP
 | _unshare OP
 ;

OP: <see main manual above for a list of pre-defined operators>
 | R
 ;

R: R R1
 | R1
 ;

R1: _reflit
 | _numlit
 | QUOTATION
 | _ident
 | _nil
 | _bra E _ket
 | _sqbra E _sqket
 | _curb E _cket
 ;

D: D1

;

D1: D1 _and D2
 | D2

;

D2: _rec D3
 | D3

;

D3: NL _eq E
 | NAME V _eq E
 | _bra D _ket
 | _sqbra D _sqket
 ;

V: V V1
 | V1

;

V1: _bra NL _ket
 | _nil
 | NAME
 ;

NL: NL _comma NAME

 88

 | NAME
 ;

RL: _ls
 | _gt
 | _le
 | _ge
 | _eq
 | _ne
 ;

NAME: _ident
 ;

	The GTL Programming Language
	Programmer’s Reference Manual
	by
	Doug Lennox
	Copyright © 2000 – 2023
	Lennox Computer
	Edition 28 December 2023
	The GTL Programming Language
	Preface

	References
	General Operation
	GTL programs are created as ASCII text files with file type (extension) .gtl
	Output by GTL Programs
	GTL adheres to the original LISP concept that output is a natural consequence of expression evaluation. So where a GTL program consists of a single expression the output of the program is the value of that expression, and that output is shown in the d...
	will generate three lines of output in the window, e.g.
	The GTL Lexical Scanner or Pre-processor
	L-values & R-values in GTL
	Diagnostic Operators

	Description
	Example 1
	Syntax

	Description
	Example 1
	Example 3
	Output of Example 3

	Description
	Example 1
	Description
	Example 1
	Syntax

	Description
	Example 1
	Description
	Example 1
	Description
	Example 1
	Description
	Example 1
	Description
	Example 1
	Description
	Example 1
	Description
	Example 1
	Syntax

	Description
	Example 1
	Description
	Example 1
	Description
	Example 1
	Bit-wise Or Operator

	Syntax
	Description
	Description
	Example 1
	Bit-wise And Operator

	Syntax
	Description
	Description
	Example 1
	Example 2
	Description
	Example 1
	Example 2
	Description
	Example 1
	Syntax

	Description
	Example 1
	Syntax

	Description
	Example 1
	Syntax

	Description
	Example 1
	Syntax

	Description
	The arguments may be mixed ref or num. The result is always num.
	Example 1
	Description
	Example 1
	Sub-string Operator
	Example 1
	Output from Example 1
	Example 2
	Output from Example 1

	Description
	Example 1
	Description
	Example 1
	Description
	Example 1
	Description
	Description
	Description
	Description
	Example 1
	Example 2
	Description
	Example 1
	Description
	Example 1
	Description
	Example 1
	Output to Example 1

	STRINGRV
	LV
	LV
	LV
	ORDER
	MEMBERS
	LAST

	Type
	String Operators
	Tuple Operators
	Content Addressable Memory Operators
	Arithmetic Operators
	Time and Date Operators
	Network Operators (client context, server context, either)

